Abstract
While prior studies have explored developing mycelium paste for EAM of this material, this research streamlined the EAM workflow for preparing living, extrudable mycelium mixtures, involving alterations in the preparation sequence and adjustments in the admixture ratios. The resultant mycelium mixture was employed in a series of experiments to optimize the parameters of robotic EAM using Artificial Neural Networks. Next, a performance-based acoustic wall was designed informed by simulation in Pachyderm. Building upon previous research by authors, two adjacent panels with high complex geometric features were selected for fabrication, presenting a challenging test scenario, as conventional planar slicing introduces stair-stepping phenomena, while non-planar slicing introduces irregularities in layer height. To address these, a hybrid slicing strategy was used by integrating both slicing techniques. Next, an experimental framework was established to assess the influence of EAM toolpath planning factors on the acoustic properties of the designed acoustic panels. Lastly, two panels were fabricated using an ABB IRB 2400 robotic arm. The alignment of the toolpath planning factors and EAM parameters resulted in a uniform material deposition in the final fabricated panels. This study underscores the transformative capacity of robotic EAM and conformal toolpath planning, presenting the development of biodegradable building materials and advanced acoustic solutions.
| Original language | English (US) |
|---|---|
| Article number | 5587 |
| Journal | Applied Sciences (Switzerland) |
| Volume | 15 |
| Issue number | 10 |
| DOIs | |
| State | Published - May 2025 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Instrumentation
- General Engineering
- Process Chemistry and Technology
- Computer Science Applications
- Fluid Flow and Transfer Processes