Abstract
The vast reduction in the size and power consumption of sensors and CMOS circuitry has led to a focused research effort on the on-board power sources which can replace the batteries. The concern with batteries has been that they must always be charged before use. Similarly, the sensors and data acquisition components in distributed networks require centralized energy sources for their operation. In some applications such as sensors for structural health monitoring in remote locations, geographically inaccessible temperature or humidity sensors, the battery charging or replacement operations can be tedious and expensive. Logically, the emphasis in such cases has been on developing the on-site generators that can transform any available form of energy at the location into electrical energy. Piezoelectric energy harvesting has emerged as one of the prime methods for transforming mechanical energy into electric energy. This review article provides a comprehensive coverage of the recent developments in the area of piezoelectric energy harvesting using low profile transducers and provides the results for various energy harvesting prototype devices. A brief discussion is also presented on the selection of the piezoelectric materials for on and off resonance applications. Analytical models reported in literature to describe the efficiency and power magnitude of the energy harvesting process are analyzed.
Original language | English (US) |
---|---|
Pages (from-to) | 165-182 |
Number of pages | 18 |
Journal | Journal of Electroceramics |
Volume | 19 |
Issue number | 1 |
DOIs | |
State | Published - Sep 2007 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Mechanics of Materials
- Electrical and Electronic Engineering
- Materials Chemistry