Adversarial Policy Learning in Two-player Competitive Games

Wenbo Guo, Xian Wu, Sui Huang, Xinyu Xing

Research output: Chapter in Book/Report/Conference proceedingConference contribution

20 Scopus citations

Abstract

In a two-player deep reinforcement learning task, recent work shows an attacker could learn an adversarial policy that triggers a target agent to perform poorly and even react in an undesired way. However, its efficacy heavily relies upon the zero-sum assumption made in the two-player game. In this work, we propose a new adversarial learning algorithm. It addresses the problem by resetting the optimization goal in the learning process and designing a new surrogate optimization function. Our experiments show that our method significantly improves adversarial agents' exploitability compared with the state-of-art attack. Besides, we also discover that our method could augment an agent with the ability to abuse the target game's unfairness. Finally, we show that agents adversarially retrained against our adversarial agents could obtain stronger adversary-resistance.

Original languageEnglish (US)
Title of host publicationProceedings of the 38th International Conference on Machine Learning, ICML 2021
PublisherML Research Press
Pages3910-3919
Number of pages10
ISBN (Electronic)9781713845065
StatePublished - 2021
Event38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Duration: Jul 18 2021Jul 24 2021

Publication series

NameProceedings of Machine Learning Research
Volume139
ISSN (Electronic)2640-3498

Conference

Conference38th International Conference on Machine Learning, ICML 2021
CityVirtual, Online
Period7/18/217/24/21

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Adversarial Policy Learning in Two-player Competitive Games'. Together they form a unique fingerprint.

Cite this