TY - GEN
T1 - Adversary resistant deep neural networks with an application to malware detection
AU - Wang, Qinglong
AU - Guo, Wenbo
AU - Zhang, Kaixuan
AU - Ororbia, Alexander G.
AU - Xing, Xinyu
AU - Liu, Xue
AU - Giles, C. Lee
N1 - Publisher Copyright:
© 2017 ACM.
PY - 2017/8/13
Y1 - 2017/8/13
N2 - Outside the highly publicized victories in the game of Go, there have been numerous successful applications of deep learning in the fields of information retrieval, computer vision, and speech recognition. In cybersecurity, an increasing number of companies have begun exploring the use of deep learning (DL) in a variety of security tasks with malware detection among the more popular. These companies claim that deep neural networks (DNNs) could help turn the tide in the war against malware infection. However, DNNs are vulnerable to adversarial samples, a shortcoming that plagues most, if not all, statistical and machine learning models. Recent research has demonstrated that those with malicious intent can easily circumvent deep learning-powered malware detection by exploiting this weakness. To address this problem, previous work developed defense mechanisms that are based on augmenting training data or enhancing model complexity. However, after analyzing DNN susceptibility to adversarial samples, we discover that the current defense mechanisms are limited and, more importantly, cannot provide theoretical guarantees of robustness against adversarial sampled-based attacks. As such, we propose a new adversary resistant technique that obstructs attackers from constructing impactful adversarial samples by randomly nullifying features within data vectors. Our proposed technique is evaluated on a real world dataset with 14,679 malware variants and 17,399 benign programs. We theoretically validate the robustness of our technique, and empirically show that our technique significantly boosts DNN robustness to adversarial samples while maintaining high accuracy in classification. To demonstrate the general applicability of our proposed method, we also conduct experiments using the MNIST and CIFAR-10 datasets, widely used in image recognition research.
AB - Outside the highly publicized victories in the game of Go, there have been numerous successful applications of deep learning in the fields of information retrieval, computer vision, and speech recognition. In cybersecurity, an increasing number of companies have begun exploring the use of deep learning (DL) in a variety of security tasks with malware detection among the more popular. These companies claim that deep neural networks (DNNs) could help turn the tide in the war against malware infection. However, DNNs are vulnerable to adversarial samples, a shortcoming that plagues most, if not all, statistical and machine learning models. Recent research has demonstrated that those with malicious intent can easily circumvent deep learning-powered malware detection by exploiting this weakness. To address this problem, previous work developed defense mechanisms that are based on augmenting training data or enhancing model complexity. However, after analyzing DNN susceptibility to adversarial samples, we discover that the current defense mechanisms are limited and, more importantly, cannot provide theoretical guarantees of robustness against adversarial sampled-based attacks. As such, we propose a new adversary resistant technique that obstructs attackers from constructing impactful adversarial samples by randomly nullifying features within data vectors. Our proposed technique is evaluated on a real world dataset with 14,679 malware variants and 17,399 benign programs. We theoretically validate the robustness of our technique, and empirically show that our technique significantly boosts DNN robustness to adversarial samples while maintaining high accuracy in classification. To demonstrate the general applicability of our proposed method, we also conduct experiments using the MNIST and CIFAR-10 datasets, widely used in image recognition research.
UR - http://www.scopus.com/inward/record.url?scp=85029051065&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029051065&partnerID=8YFLogxK
U2 - 10.1145/3097983.3098158
DO - 10.1145/3097983.3098158
M3 - Conference contribution
AN - SCOPUS:85029051065
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 1145
EP - 1153
BT - KDD 2017 - Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017
Y2 - 13 August 2017 through 17 August 2017
ER -