Aerodyamics of tip leakage flows near partial squealer rims in an Axial Flow Turbine Stage

Cengiz Camci, Debashis Dey, Levent Kavurmacioglu

Research output: Contribution to journalArticlepeer-review

106 Scopus citations

Abstract

This paper deals with an experimental investigation of aerodynamic characteristics of full and partial-length squealer rims in a turbine stage. Full and partial-length squealer rims are investigated separately on the pressure side and on the suction side in the "Axial Flow Turbine Research Facility" (AFTRF) of the Pennsylvania State University. The streamwise length of these "partial squealer tips" and their chordwise position are varied to find an optimal aerodynamic tip configuration. The optimal configuration in this cold turbine study is defined as the one that is minimizing the stage exit total pressure defect in the tip vortex dominated zone. A new "channel arrangement" diverting some of the leakage flow into the trailing edge zone is also studied. Current results indicate that the use of "partial squealer rims" in axial flow turbines can positively affect the local aerodynamic field by weakening the tip leakage vortex. Results also show that the suction side partial squealers are aerodynamically superior to the pressure side squealers and the channel arrangement. The suction side partial squealers are capable of reducing the stage exit total pressure defect associated with the tip leakage flow to a significant degree.

Original languageEnglish (US)
Pages (from-to)14-24
Number of pages11
JournalJournal of Turbomachinery
Volume127
Issue number1
DOIs
StatePublished - Jan 2005

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Aerodyamics of tip leakage flows near partial squealer rims in an Axial Flow Turbine Stage'. Together they form a unique fingerprint.

Cite this