TY - GEN
T1 - Aerodynamic influence of endwall fences located in the vicinity of the leading edge-endwall junction of nozzle guide vanes
AU - Gokce, Zeki Ozgur
AU - Camci, Cengiz
PY - 2011
Y1 - 2011
N2 - Secondary flow characteristics like horseshoe vortices and related total pressure losses decrease turbine efficiency. Computerized simulations of potentially favorable modifications in turbine systems could provide a fast, numerical and inexpensive method of evaluating their effects on flow properties: This paper consists of a comparative numerical study of the flow characteristics of a domain containing a vertical cylinder subjected to cross flow and upstream endwall modifications. Analyzing the flow around a turbine nozzle guide vane (NGV) could be simplified by modeling it as a vertical cylinder with a diameter proportional to the leading edge diameter of the blade, and adding upstream endwall fences of varying dimensions and alignments could attenuate the development of a horseshoe vortex. A commercial computational fluid dynamics (CFD) software package, Fluent, was used for the numerical analysis. To validate the modeling strategy, experimental data previously reported in the literature for conventional cylinders in cross flow were compared to the current predictions. A grid independence study was also performed. The lateral distance between the two legs of the horseshoe vortex downstream of the cylinder was decreased by 7% to 14%. All fence types effectively changed the location of the main horseshoe vortex roll-up. The height of the fence was more influential than the length of the fence in modifying flow characteristics. The existence of the fences slightly increased the mass-averaged total pressure loss far downstream of the cylinder; however, beneficial near-fence flow characteristics were observed in all cases. Also, it was noted that an endwall fence could possibly result in decreased interaction between the horseshoe vortices created by consecutive blades in a row of NGV blades, which would be expected to result in improved flow conditions within actual turbine passages.
AB - Secondary flow characteristics like horseshoe vortices and related total pressure losses decrease turbine efficiency. Computerized simulations of potentially favorable modifications in turbine systems could provide a fast, numerical and inexpensive method of evaluating their effects on flow properties: This paper consists of a comparative numerical study of the flow characteristics of a domain containing a vertical cylinder subjected to cross flow and upstream endwall modifications. Analyzing the flow around a turbine nozzle guide vane (NGV) could be simplified by modeling it as a vertical cylinder with a diameter proportional to the leading edge diameter of the blade, and adding upstream endwall fences of varying dimensions and alignments could attenuate the development of a horseshoe vortex. A commercial computational fluid dynamics (CFD) software package, Fluent, was used for the numerical analysis. To validate the modeling strategy, experimental data previously reported in the literature for conventional cylinders in cross flow were compared to the current predictions. A grid independence study was also performed. The lateral distance between the two legs of the horseshoe vortex downstream of the cylinder was decreased by 7% to 14%. All fence types effectively changed the location of the main horseshoe vortex roll-up. The height of the fence was more influential than the length of the fence in modifying flow characteristics. The existence of the fences slightly increased the mass-averaged total pressure loss far downstream of the cylinder; however, beneficial near-fence flow characteristics were observed in all cases. Also, it was noted that an endwall fence could possibly result in decreased interaction between the horseshoe vortices created by consecutive blades in a row of NGV blades, which would be expected to result in improved flow conditions within actual turbine passages.
UR - http://www.scopus.com/inward/record.url?scp=84869192352&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84869192352&partnerID=8YFLogxK
U2 - 10.1115/imece2011-65255
DO - 10.1115/imece2011-65255
M3 - Conference contribution
AN - SCOPUS:84869192352
SN - 9780791854877
T3 - ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
SP - 87
EP - 99
BT - Advances in Aerospace Technology; Energy Water Nexus; Globalization of Engineering; Posters
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
Y2 - 11 November 2011 through 17 November 2011
ER -