TY - GEN
T1 - Aerodynamic tip desensitization of an axial turbine rotor using tip platform extensions
AU - Dey, Debashis
AU - Camci, Cengiz
PY - 2001
Y1 - 2001
N2 - Aerodynamic losses due to the formation of a leakage vortex near the tip section of rotor blades form a significant part of viscous losses in axial flow turbines. The leakage flow, mainly induced by the pressure differential between the pressure side and suction side of a rotor tip section, usually rolls into a streamwise vortical structure near the suction side part of the blade tip. The current study uses the concept of a tip platform extension that is a very short "winglet" obtained by slightly extending the tip platform in the tangential direction. The use of a pressure side tip extension can significantly affect the local aerodynamic field by weakening the leakage vortex structure. Phase averaged, time accurate total pressure measurements downstream of a single stage turbine facility are provided from a total pressure probe that has a time response of 150 kHz. Complete total pressure maps in all of the 29 rotor exit planes are measured accurately. Various pressure and suction side extension configurations are compared against a baseline case. The current investigation performed in the Axial Flow Turbine Research Facility (AFTRF) of the Pennsylvania State University shows that significant total to total efficiency gain is possible by the use of tip platform extensions.
AB - Aerodynamic losses due to the formation of a leakage vortex near the tip section of rotor blades form a significant part of viscous losses in axial flow turbines. The leakage flow, mainly induced by the pressure differential between the pressure side and suction side of a rotor tip section, usually rolls into a streamwise vortical structure near the suction side part of the blade tip. The current study uses the concept of a tip platform extension that is a very short "winglet" obtained by slightly extending the tip platform in the tangential direction. The use of a pressure side tip extension can significantly affect the local aerodynamic field by weakening the leakage vortex structure. Phase averaged, time accurate total pressure measurements downstream of a single stage turbine facility are provided from a total pressure probe that has a time response of 150 kHz. Complete total pressure maps in all of the 29 rotor exit planes are measured accurately. Various pressure and suction side extension configurations are compared against a baseline case. The current investigation performed in the Axial Flow Turbine Research Facility (AFTRF) of the Pennsylvania State University shows that significant total to total efficiency gain is possible by the use of tip platform extensions.
UR - http://www.scopus.com/inward/record.url?scp=84905721801&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905721801&partnerID=8YFLogxK
U2 - 10.1115/2001-GT-0484
DO - 10.1115/2001-GT-0484
M3 - Conference contribution
AN - SCOPUS:84905721801
SN - 9780791878507
T3 - Proceedings of the ASME Turbo Expo
BT - Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2001: Power for Land, Sea, and Air, GT 2001
Y2 - 4 June 2001 through 7 June 2001
ER -