Abstract
This paper presents results of a comparative study on the effect of standard and tapered leading-edge protection (LEP) tapes on the annual energy production (AEP) of a utility-scale 1.5 MW wind turbine. Numerical models are developed in STAR-CCM+ to estimate the impact of LEP tapes on lift and drag coefficients of an NACA 64-618 airfoil operating at Re = 3 × 106. Experimental drag coefficient data are collected for LEP tapes applied to the tip-section of a de-commissioned wind turbine blade for numerical validation. The objective is to determine the physical mechanisms responsible for the aerodynamic degradation observed with standard LEP tapes, and to design a tapered LEP tape that reduces the associated adverse impact on AEP. An in-house wind turbine design and analysis code, XTurb-PSU, is used to estimate AEP using airfoil data obtained by STAR-CCM+. For standard LEP tapes, laminar-to-turbulent boundary-layer transition occurs at the LEP tape edge, resulting in AEP losses of 2%–3%. Comparable tapered LEP tapes can be designed to suppress boundary-layer transition for backward-facing step heights below a critical value such that associated impact on AEP is negligible.
Original language | English (US) |
---|---|
Pages (from-to) | 1296-1316 |
Number of pages | 21 |
Journal | Wind Engineering |
Volume | 45 |
Issue number | 5 |
DOIs | |
State | Published - Oct 2021 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology