AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex, and produces long-term passive avoidance and radial-arm maze deficits in the rat

Thomas J. Walsh, Hugh A. Tilson, Diane L. DeHaven, Richard B. Mailman, Abraham Fisher, Israel Hanin

Research output: Contribution to journalArticlepeer-review

189 Scopus citations

Abstract

The behavioral and biochemical effects of AF64A, a presynaptic cholinergic neurotoxin, were investigated. Bilateral administration of this compound into the lateral cerebral ventricles produced transient and dose-related effects on sensorimotor function and long-term impairments of cognitive behavior. Male Fischer-F344 rats dosed with either 15 or 30 nmol of AF64A reacted 29-62% faster than CSF-injected controls in a hot-plate test 14 (but not 1, 7, 21 or 28) days following dosing. The group administered 15 nmol of AF64A was also significantly more active (41%) than controls 28 days following dosing. The activity level of this group was comparable to that of controls at other times and hyperactivity was never observed in the 30 nmol group. Retention of a step-through passive avoidance task, assessed 35 days after dosing, was impaired in both 15 and the 30 nmol groups. Their step-through latencies were significatlly shorter than the control latencies, and they exhibited more partial entries during the 24-h retention test. Radial-arm maze performance, measured 60-80 days following treatment, was markedly impaired in the treated groups. Animals treated with AF64A made fewer correct responses in their first 8 choices, required more total selections to complete the task, and had an altered pattern of spatial responding in the maze. The neurochemical changes produced by AF64A, determined 120 days after dosing, were specific to the cholinergic system and consisted of decreases of ACh in both the hippocampus (15 and 30 nmol groups) and the frontal cortex (30 nmol group). The concentrations of catecholamines, indoleamines, their metabolites and choline in various brain regions were not affected by AF64A. Furthermore, histological analysis revealed that the doses of AF64A used in the present study did not damage the hippocampus, the fimbria-fornix, the septum or the caudate nucleus. These data support the contention that cholinergic processes in the hippocampus, nd/or frontal cortex play an important role in learning and memory processes. Furthermore, based upon the behavioral and biochemical data presented, it is suggested that AF64A could be a useful pharmacological tool for examining the neurobiological substrates of putative cholinergic disorder such as senile dementia of the Alzheimer's type.

Original languageEnglish (US)
Pages (from-to)91-102
Number of pages12
JournalBrain research
Volume321
Issue number1
DOIs
StatePublished - Oct 29 1984

All Science Journal Classification (ASJC) codes

  • General Neuroscience
  • Molecular Biology
  • Clinical Neurology
  • Developmental Biology

Fingerprint

Dive into the research topics of 'AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex, and produces long-term passive avoidance and radial-arm maze deficits in the rat'. Together they form a unique fingerprint.

Cite this