TY - JOUR
T1 - Aggradation of gravels in tidally influenced fluvial systems
T2 - Upper Albian (Lower Cretaceous) on the cratonic margin of the North American Western Interior foreland basin
AU - Brenner, Robert L.
AU - Ludvigson, Gregory A.
AU - Witzke, Brian L.
AU - Phillips, Preston Lee
AU - White, Timothy S.
AU - Ufnar, David F.
AU - González, Luis A.
AU - Joeckel, R. Matthew
AU - Goettemoeller, Adrian
AU - Shirk, Benjamin R.
N1 - Funding Information:
Funding was provided by National Geographic Society Grant # 5271-94, Iowa Science Foundation Grant # 94-19, the Center for Global and Regional Environmental Research at the University of Iowa, and National Science Foundation Grant # EAR 96-28128. Technical cooperation was received from the Indiana Geological Survey, the Kansas Geological Survey, the Nebraska Conservation Survey Division, and the Iowa Geological Survey Bureau. Elizabeth Garst, owner of Garst Farm Resort, and the operators of the Ash Grove Cement Quarry, graciously allowed us to study critical exposures on their properties. John P. Pope aided in conglomerate sample collection and fossil identification, and two unidentified reviewers supplied significant input to this manuscript. We are indebted to all these organizations and individuals.
PY - 2003/8
Y1 - 2003/8
N2 - Alluvial conglomerates were widely distributed around the margin of the Early Cretaceous North American Cretaceous Western Interior Seaway (KWIS). Conglomerates, sandstones, and lesser amounts of mudstones of the upper Albian Nishnabotna Member of the Dakota Formation were deposited as fill-in valleys that were incised up to 80 m into upper Paleozoic strata. These paleovalleys extended southwestward across present-day northwestern Iowa into eastern Nebraska. Conglomerate samples from four localities in western Iowa and eastern Nebraska consist mostly of polycrystalline quartz with lesser amounts of microcrystalline (mostly chert), and monocrystalline quartz. Previous studies discovered that some chert pebbles contain Ordovician-Pennsylvanian invertebrate fossils. The chert clasts analyzed in this study were consistent with these findings. In addition, we found that non-chert clasts consist of metaquartzite, strained monocrystalline quartz and 'vein' quartz from probable Proterozic sources, indicating that parts of the fluvial system's sediment load must have travelled distances of 400-1200 km. The relative tectonic stability of this subcontinent dictated that stream gradients were relatively low with estimates ranging from 0.3 to 0.6 m/km. Considering the complex sedimentologic relationships that must have been involved, the ability of low-gradient easterly-sourced rivers to entrain gravel clasts was primarily a function of paleodischarge rather than a function of steep gradients. Oxygen isotopic evidence from Albian sphaerosiderite-bearing paleosols in the Dakota Formation and correlative units from Kansas to Alaska suggest that mid-latitude continental rainfall in the Albian was perhaps twice that of the modern climate system. Hydrologic fluxes may have been related to wet-dry climatic cycles on decade or longer scales that could account for the required water supply flux. Regardless of temporal scale, gravels were transported during 'high-energy' pulses, under humid climatic conditions in large catchment areas. An overall rising sea level during the late Albian created accommodation space for the gravelly lithofacies equivalent to the Kiowa-Skull Creek rocks. As Western Interior sea level rose, regional stream gradients were reduced, resulting in regional fluvial aggradation. The conglomeratic lower parts of the Nishnabotna Member of the Dakota Formation formed the transgressive systems tract within an upper Albian sequence that is defined by two unconformities that can be traced from marine Kiowa strata in western Kansas northeastward into western Iowa (Brenner et al., 2000). Mud-draped cross-bedded sandstone bodies, laminated mudstone intervals, and vertical burrows in the lower strata of the Nishnabotna Member indicate that estuarine conditions existed at the mouths of the river system, and tidal effects were transmitted at least 200 km inland from the interpreted late Albian coast. These observations suggest that estuarine conditions stepped up the incised valleys as fluvial sediments aggraded in response to regional transgression that continued through the Late Albian.
AB - Alluvial conglomerates were widely distributed around the margin of the Early Cretaceous North American Cretaceous Western Interior Seaway (KWIS). Conglomerates, sandstones, and lesser amounts of mudstones of the upper Albian Nishnabotna Member of the Dakota Formation were deposited as fill-in valleys that were incised up to 80 m into upper Paleozoic strata. These paleovalleys extended southwestward across present-day northwestern Iowa into eastern Nebraska. Conglomerate samples from four localities in western Iowa and eastern Nebraska consist mostly of polycrystalline quartz with lesser amounts of microcrystalline (mostly chert), and monocrystalline quartz. Previous studies discovered that some chert pebbles contain Ordovician-Pennsylvanian invertebrate fossils. The chert clasts analyzed in this study were consistent with these findings. In addition, we found that non-chert clasts consist of metaquartzite, strained monocrystalline quartz and 'vein' quartz from probable Proterozic sources, indicating that parts of the fluvial system's sediment load must have travelled distances of 400-1200 km. The relative tectonic stability of this subcontinent dictated that stream gradients were relatively low with estimates ranging from 0.3 to 0.6 m/km. Considering the complex sedimentologic relationships that must have been involved, the ability of low-gradient easterly-sourced rivers to entrain gravel clasts was primarily a function of paleodischarge rather than a function of steep gradients. Oxygen isotopic evidence from Albian sphaerosiderite-bearing paleosols in the Dakota Formation and correlative units from Kansas to Alaska suggest that mid-latitude continental rainfall in the Albian was perhaps twice that of the modern climate system. Hydrologic fluxes may have been related to wet-dry climatic cycles on decade or longer scales that could account for the required water supply flux. Regardless of temporal scale, gravels were transported during 'high-energy' pulses, under humid climatic conditions in large catchment areas. An overall rising sea level during the late Albian created accommodation space for the gravelly lithofacies equivalent to the Kiowa-Skull Creek rocks. As Western Interior sea level rose, regional stream gradients were reduced, resulting in regional fluvial aggradation. The conglomeratic lower parts of the Nishnabotna Member of the Dakota Formation formed the transgressive systems tract within an upper Albian sequence that is defined by two unconformities that can be traced from marine Kiowa strata in western Kansas northeastward into western Iowa (Brenner et al., 2000). Mud-draped cross-bedded sandstone bodies, laminated mudstone intervals, and vertical burrows in the lower strata of the Nishnabotna Member indicate that estuarine conditions existed at the mouths of the river system, and tidal effects were transmitted at least 200 km inland from the interpreted late Albian coast. These observations suggest that estuarine conditions stepped up the incised valleys as fluvial sediments aggraded in response to regional transgression that continued through the Late Albian.
UR - http://www.scopus.com/inward/record.url?scp=0141527388&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0141527388&partnerID=8YFLogxK
U2 - 10.1016/S0195-6671(03)00054-5
DO - 10.1016/S0195-6671(03)00054-5
M3 - Article
AN - SCOPUS:0141527388
SN - 0195-6671
VL - 24
SP - 439
EP - 448
JO - Cretaceous Research
JF - Cretaceous Research
IS - 4
ER -