TY - JOUR
T1 - Aging and the skin blood flow response to the unloading of baroreceptors during heat and cold stress
AU - Scremin, Glaucio
AU - Kenney, W. Larry
PY - 2004/3
Y1 - 2004/3
N2 - Control of skin blood flow (SkBF) is on the efferent arm of both thermoregulatory and nonthermoregulatory reflexes. To what extent aging may affect the SkBF response when these two reflex systems interact is unknown. To determine the response of aged skin to the unloading of baroreceptors in thermoneutral, cold stress, and heat stress conditions, sequential bouts of nonhypotensive lower body negative pressure (LBNP) were applied at -10, -20, and -30 mmHg in 14 young (18-25 yr) and 14 older (63-78 yr) men. SkBF was measured by laser-Doppler velocimetry (averaged over 2 forearm sites), and data are expressed as percentage of maximal cutaneous vascular conductance (%CVC max). Total forearm blood flow was measured by venous occlusion plethysmography, and forearm vascular conductance (FVC) was calculated as the ratio of forearm blood flow to mean arterial pressure. In young men, all three intensities of LBNP in thermoneutrality decreased FVC significantly (P < 0.05), but FVC at -10 mmHg did not change in the older men. There were no significant LBNP effects on %CVCmax. Application of LBNP during cold stress did not significantly change %CVCmax or FVC in either age group. During heat stress, -10 to -30 mmHg of LBNP decreased FVC significantly (P < 0.05) in both age groups, but these decreases were attenuated in the older men (P < 0.05). %CVCmax decreased at -30 mmHg in the younger men only. These results suggest that older men have an attenuated skin vasoconstrictor response to the unloading of baroreceptors in heat stress conditions. Furthermore, the forearm vasoconstriction elicited by LBNP in older men reflects that of underlying tissue (i.e., muscle) rather than that of skin, whereas -30 mmHg LBNP also decreases SkBF in young hyperthermic men.
AB - Control of skin blood flow (SkBF) is on the efferent arm of both thermoregulatory and nonthermoregulatory reflexes. To what extent aging may affect the SkBF response when these two reflex systems interact is unknown. To determine the response of aged skin to the unloading of baroreceptors in thermoneutral, cold stress, and heat stress conditions, sequential bouts of nonhypotensive lower body negative pressure (LBNP) were applied at -10, -20, and -30 mmHg in 14 young (18-25 yr) and 14 older (63-78 yr) men. SkBF was measured by laser-Doppler velocimetry (averaged over 2 forearm sites), and data are expressed as percentage of maximal cutaneous vascular conductance (%CVC max). Total forearm blood flow was measured by venous occlusion plethysmography, and forearm vascular conductance (FVC) was calculated as the ratio of forearm blood flow to mean arterial pressure. In young men, all three intensities of LBNP in thermoneutrality decreased FVC significantly (P < 0.05), but FVC at -10 mmHg did not change in the older men. There were no significant LBNP effects on %CVCmax. Application of LBNP during cold stress did not significantly change %CVCmax or FVC in either age group. During heat stress, -10 to -30 mmHg of LBNP decreased FVC significantly (P < 0.05) in both age groups, but these decreases were attenuated in the older men (P < 0.05). %CVCmax decreased at -30 mmHg in the younger men only. These results suggest that older men have an attenuated skin vasoconstrictor response to the unloading of baroreceptors in heat stress conditions. Furthermore, the forearm vasoconstriction elicited by LBNP in older men reflects that of underlying tissue (i.e., muscle) rather than that of skin, whereas -30 mmHg LBNP also decreases SkBF in young hyperthermic men.
UR - http://www.scopus.com/inward/record.url?scp=1342283033&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1342283033&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00928.2003
DO - 10.1152/japplphysiol.00928.2003
M3 - Article
C2 - 14594858
AN - SCOPUS:1342283033
SN - 8750-7587
VL - 96
SP - 1019
EP - 1025
JO - Journal of applied physiology
JF - Journal of applied physiology
IS - 3
ER -