Abstract
Air-promoted adsorptive desulfurization (ADS) of commercial diesel fuel over a Ti-Ce mixed oxide adsorbent in a flow system is investigated in this work. The fresh/spent adsorbents were characterized using X-ray absorption near edge structure spectroscopy. Results show that sulfoxide species are formed during air-promoted ADS over Ti0.9Ce0.1O2 adsorbent. Adsorption selectivity of various compounds in fuel follows the order of dibenzothiophene sulfone>dibenzothiophene ≃ benzothiophene>4-methyldibenzothiophene> 4,6-dimethyldibenzothiophene>phenanthrene>methylnaphthalene>fluorene>naphthalene. The high adsorption affinity of sulfoxide/sulfone is attributed to stronger Ti-OSR2 than Ti-SR2 interactions, resulting in significantly enhanced ADS capacity. Adsorption affinity was calculated using ab initio methods. For Ti-Ce mixed oxides, reduced surface sites lead to O-vacancy sites for O2 activation for oxidizing thiophenic species. Low temperature is preferred for air-promoted ADS, and the Ti-Ce adsorbent can be regenerated via oxidative air treatment. This study paves a new path of designing regenerable adsorbents.
Original language | English (US) |
---|---|
Pages (from-to) | 631-639 |
Number of pages | 9 |
Journal | AIChE Journal |
Volume | 61 |
Issue number | 2 |
DOIs | |
State | Published - Feb 1 2015 |
All Science Journal Classification (ASJC) codes
- Biotechnology
- Environmental Engineering
- General Chemical Engineering