TY - JOUR
T1 - Alcohol impairs insulin and IGF-I stimulation of S6K1 but not 4E-BP1 in skeletal muscle
AU - Kumar, Vinayshree
AU - Frost, Robert A.
AU - Lang, Charles H.
PY - 2002/11/1
Y1 - 2002/11/1
N2 - The present study determined whether acute alcohol (ethanol; EtOH) intoxication in rats impaired components of the insulin- and IGF-I-signaling pathway in skeletal muscle. Rats were administered EtOH, and 2.5 h thereafter either insulin, IGF-I, or saline was injected and the gastrocnemius removed. EtOH did not alter the total amount or tyrosine phosphorylation of the insulin receptor, IGF-I receptor, insulin receptor substrate (IRS)-1, or protein kinase B (PKB)/Akt under basal or hormone-stimulated conditions. In contrast, the ability of insulin or IGF-I to phosphorylate T389 and T421/S424 on S6K-1 was markedly diminished by EtOH, and these changes were associated with a reduction in the phosphorylation of the ribosomal protein S6. Under basal conditions, EtOH altered the distribution of eukaryotic initiation factor (eIF)4E, as evidenced by a decreased amount of active eIF4E · eIF4G complex, an increased amount of inactive eIF4E · 4E-binding protein (BP)1 complex, and decreased 4E-BP1 phosphorylation. In contrast, EtOH did not impair the ability of either hormone to reverse the changes in eIF4E distribution or 4E-BP1 phosphorylation. Pretreatment with a glucocorticoid receptor antagonist was unable to attenuate either the basal EtOH-induced changes in eIF4E distribution or the impaired ability of IGF-I to stimulate S6K1 and S6 phosphorylation. Hence, acute alcohol intoxication alters selected aspects of translational control under both basal and anabolic hormone-stimulated conditions in skeletal muscle in a glucocorticoid-independent manner.
AB - The present study determined whether acute alcohol (ethanol; EtOH) intoxication in rats impaired components of the insulin- and IGF-I-signaling pathway in skeletal muscle. Rats were administered EtOH, and 2.5 h thereafter either insulin, IGF-I, or saline was injected and the gastrocnemius removed. EtOH did not alter the total amount or tyrosine phosphorylation of the insulin receptor, IGF-I receptor, insulin receptor substrate (IRS)-1, or protein kinase B (PKB)/Akt under basal or hormone-stimulated conditions. In contrast, the ability of insulin or IGF-I to phosphorylate T389 and T421/S424 on S6K-1 was markedly diminished by EtOH, and these changes were associated with a reduction in the phosphorylation of the ribosomal protein S6. Under basal conditions, EtOH altered the distribution of eukaryotic initiation factor (eIF)4E, as evidenced by a decreased amount of active eIF4E · eIF4G complex, an increased amount of inactive eIF4E · 4E-binding protein (BP)1 complex, and decreased 4E-BP1 phosphorylation. In contrast, EtOH did not impair the ability of either hormone to reverse the changes in eIF4E distribution or 4E-BP1 phosphorylation. Pretreatment with a glucocorticoid receptor antagonist was unable to attenuate either the basal EtOH-induced changes in eIF4E distribution or the impaired ability of IGF-I to stimulate S6K1 and S6 phosphorylation. Hence, acute alcohol intoxication alters selected aspects of translational control under both basal and anabolic hormone-stimulated conditions in skeletal muscle in a glucocorticoid-independent manner.
UR - http://www.scopus.com/inward/record.url?scp=0036838513&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036838513&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.00181.2002
DO - 10.1152/ajpendo.00181.2002
M3 - Article
C2 - 12376318
AN - SCOPUS:0036838513
SN - 0193-1849
VL - 283
SP - E917-E928
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 5 46-5
ER -