Algorithmic stability for adaptive data analysis?

Raef Bassily, Thomas Steinke, Kobbi Nissim, Uri Stemmer, Adam Smith, Jonathan Ullman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

125 Scopus citations

Abstract

Adaptivity is an important feature of data analysis-the choice of questions to ask about a dataset often depends on previous interactions with the same dataset. However, statistical validity is typically studied in a nonadaptive model, where all questions are specified before the dataset is drawn. Recent work by Dwork et al. (STOC, 2015) and Hardt and Ullman (FOCS, 2014) initiated a general formal study of this problem, and gave the first upper and lower bounds on the achievable generalization error for adaptive data analysis. Specifically, suppose there is an unknown distribution P and a set of n independent samples x is drawn from P. We seek an algorithm that, given x as input, accurately answers a sequence of adaptively chosen "queries" about the unknown distribution P. How many samples n must we draw from the distribution, as a function of the type of queries, the number of queries, and the desired level of accuracy? In this work we make two new contributions towards resolving this question: 1. We give upper bounds on the number of samples n that are needed to answer statistical queries. The bounds improve and simplify the work of Dwork et al. (STOC, 2015), and have been applied in subsequent work by those authors (Science, 2015; NIPS, 2015). 2. We prove the first upper bounds on the number of samples required to answer more general families of queries. These include arbitrary low-sensitivity queries and an important class of optimization queries (alternatively, risk minimization queries). As in Dwork et al., our algorithms are based on a connection with algorithmic stability in the form of differential privacy. We extend their work by giving a quantitatively optimal, more general, and simpler proof of their main theorem that the stability notion guaranteed by differential privacy implies low generalization error. We also show that weaker stability guarantees such as bounded KL divergence and total variation distance lead to correspondingly weaker generalization guarantees.

Original languageEnglish (US)
Title of host publicationSTOC 2016 - Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing
EditorsYishay Mansour, Daniel Wichs
PublisherAssociation for Computing Machinery
Pages1046-1059
Number of pages14
ISBN (Electronic)9781450341325
DOIs
StatePublished - Jun 19 2016
Event48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016 - Cambridge, United States
Duration: Jun 19 2016Jun 21 2016

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
Volume19-21-June-2016
ISSN (Print)0737-8017

Other

Other48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016
Country/TerritoryUnited States
CityCambridge
Period6/19/166/21/16

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint

Dive into the research topics of 'Algorithmic stability for adaptive data analysis?'. Together they form a unique fingerprint.

Cite this