TY - GEN
T1 - Algorithmic stability for adaptive data analysis?
AU - Bassily, Raef
AU - Steinke, Thomas
AU - Nissim, Kobbi
AU - Stemmer, Uri
AU - Smith, Adam
AU - Ullman, Jonathan
N1 - Publisher Copyright:
© 2016 ACM. 978-1-4503-4132-5/16/06...$15.00.
PY - 2016/6/19
Y1 - 2016/6/19
N2 - Adaptivity is an important feature of data analysis-the choice of questions to ask about a dataset often depends on previous interactions with the same dataset. However, statistical validity is typically studied in a nonadaptive model, where all questions are specified before the dataset is drawn. Recent work by Dwork et al. (STOC, 2015) and Hardt and Ullman (FOCS, 2014) initiated a general formal study of this problem, and gave the first upper and lower bounds on the achievable generalization error for adaptive data analysis. Specifically, suppose there is an unknown distribution P and a set of n independent samples x is drawn from P. We seek an algorithm that, given x as input, accurately answers a sequence of adaptively chosen "queries" about the unknown distribution P. How many samples n must we draw from the distribution, as a function of the type of queries, the number of queries, and the desired level of accuracy? In this work we make two new contributions towards resolving this question: 1. We give upper bounds on the number of samples n that are needed to answer statistical queries. The bounds improve and simplify the work of Dwork et al. (STOC, 2015), and have been applied in subsequent work by those authors (Science, 2015; NIPS, 2015). 2. We prove the first upper bounds on the number of samples required to answer more general families of queries. These include arbitrary low-sensitivity queries and an important class of optimization queries (alternatively, risk minimization queries). As in Dwork et al., our algorithms are based on a connection with algorithmic stability in the form of differential privacy. We extend their work by giving a quantitatively optimal, more general, and simpler proof of their main theorem that the stability notion guaranteed by differential privacy implies low generalization error. We also show that weaker stability guarantees such as bounded KL divergence and total variation distance lead to correspondingly weaker generalization guarantees.
AB - Adaptivity is an important feature of data analysis-the choice of questions to ask about a dataset often depends on previous interactions with the same dataset. However, statistical validity is typically studied in a nonadaptive model, where all questions are specified before the dataset is drawn. Recent work by Dwork et al. (STOC, 2015) and Hardt and Ullman (FOCS, 2014) initiated a general formal study of this problem, and gave the first upper and lower bounds on the achievable generalization error for adaptive data analysis. Specifically, suppose there is an unknown distribution P and a set of n independent samples x is drawn from P. We seek an algorithm that, given x as input, accurately answers a sequence of adaptively chosen "queries" about the unknown distribution P. How many samples n must we draw from the distribution, as a function of the type of queries, the number of queries, and the desired level of accuracy? In this work we make two new contributions towards resolving this question: 1. We give upper bounds on the number of samples n that are needed to answer statistical queries. The bounds improve and simplify the work of Dwork et al. (STOC, 2015), and have been applied in subsequent work by those authors (Science, 2015; NIPS, 2015). 2. We prove the first upper bounds on the number of samples required to answer more general families of queries. These include arbitrary low-sensitivity queries and an important class of optimization queries (alternatively, risk minimization queries). As in Dwork et al., our algorithms are based on a connection with algorithmic stability in the form of differential privacy. We extend their work by giving a quantitatively optimal, more general, and simpler proof of their main theorem that the stability notion guaranteed by differential privacy implies low generalization error. We also show that weaker stability guarantees such as bounded KL divergence and total variation distance lead to correspondingly weaker generalization guarantees.
UR - http://www.scopus.com/inward/record.url?scp=84979223173&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84979223173&partnerID=8YFLogxK
U2 - 10.1145/2897518.2897566
DO - 10.1145/2897518.2897566
M3 - Conference contribution
AN - SCOPUS:84979223173
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 1046
EP - 1059
BT - STOC 2016 - Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing
A2 - Mansour, Yishay
A2 - Wichs, Daniel
PB - Association for Computing Machinery
T2 - 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016
Y2 - 19 June 2016 through 21 June 2016
ER -