Abstract
The dissimilarity of material composition in existing stretchable electronics and biological organisms is a key bottleneck, still yet to be resolved, toward seamless integration between stretchable electronics and biological species. For instance, human or animal tissues and skins are fully made out of soft polymer species, while existing stretchable electronics are composed of rigid inorganic materials, either purely or partially. Soft stretchable electronics fully made out of polymeric materials with intrinsic softness and stretchability are sought after and therefore proposed to address this technical challenge. Here, rubbery electronics and sensors fully made out of stretchable polymeric materials including all-polymer rubbery transistors, sensors, and sensory skin, which have similar material composition to biology, are reported. The fabricated all-polymer rubbery transistors exhibit field-effect mobility of 1.11 cm2 V-1 s-1 and retain their transistor performance even under mechanical stretch of 30%. In addition, all-polymer rubbery strain and temperature sensors are demonstrated with high gauge factor and good temperature sensing capability. Based on these all-polymer rubbery electronics, an active-matrix multiplexed sensory skin on a robotic hand is demonstrated to illustrate one of the applications.
Original language | English (US) |
---|---|
Article number | 2111232 |
Journal | Advanced Functional Materials |
Volume | 32 |
Issue number | 15 |
DOIs | |
State | Published - Apr 11 2022 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Chemistry
- Condensed Matter Physics
- General Materials Science
- Electrochemistry
- Biomaterials