Abstract
Black orthorhombic (B-γ) CsSnI3 with reduced biotoxicity and environmental impact and excellent optoelectronic properties is being considered as a promising eco-friendly candidate for high-performing perovskite solar cells (PSCs). A major challenge in a large-scale implementation of CsSnI3 PSCs includes the rapid transformation of Sn2+ to Sn4+ (within a few minutes) under an ambient-Air condition. Here, we demonstrate that ambient-Air stable B-γCsSnI3 PSCs can be fabricated by incorporating N,N′-methylenebis(acrylamide) (MBAA) into the perovskite layer and by using poly(3-hexylthiophene) as the hole transporting material. The lone electron pairs of-NH and-CO units of MBAA are designed to form coordination bonding with Sn2+ in the B-γCsSnI3, resulting in a reduced defect (Sn4+) density and better stability under multiple conditions for the perovskite light absorber. After a modification, the highest power conversion efficiency (PCE) of 7.50% is documented under an ambient-Air condition for the unencapsulated CsSnI3-MBAA PSC. Furthermore, the MBAA-modified devices sustain 60.2%, 76.5%, and 58.4% of their initial PCEs after 1440 h of storage in an inert condition, after 120 h of storage in an ambient-Air condition, and after 120 h of 1 Sun continuous illumination, respectively.
Original language | English (US) |
---|---|
Pages (from-to) | 4319-4328 |
Number of pages | 10 |
Journal | Journal of the American Chemical Society |
Volume | 143 |
Issue number | 11 |
DOIs | |
State | Published - Mar 24 2021 |
All Science Journal Classification (ASJC) codes
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry
Fingerprint
Dive into the research topics of 'Ambient-Air-Stable Lead-Free CsSnI3Solar Cells with Greater than 7.5% Efficiency'. Together they form a unique fingerprint.Equipment
-
MRI-MCL-TEM-FEI Titan3 G2
Stapleton, J. J. (Manager)
Materials Characterization LabEquipment/facility: Equipment