Ambient-Air-Stable Lead-Free CsSnI3Solar Cells with Greater than 7.5% Efficiency

Tao Ye, Ke Wang, Yuchen Hou, Dong Yang, Nicholas Smith, Brenden Magill, Jungjin Yoon, Rathsara R.H.H. Mudiyanselage, Giti A. Khodaparast, Kai Wang, Shashank Priya

Research output: Contribution to journalArticlepeer-review

147 Scopus citations

Abstract

Black orthorhombic (B-γ) CsSnI3 with reduced biotoxicity and environmental impact and excellent optoelectronic properties is being considered as a promising eco-friendly candidate for high-performing perovskite solar cells (PSCs). A major challenge in a large-scale implementation of CsSnI3 PSCs includes the rapid transformation of Sn2+ to Sn4+ (within a few minutes) under an ambient-Air condition. Here, we demonstrate that ambient-Air stable B-γCsSnI3 PSCs can be fabricated by incorporating N,N′-methylenebis(acrylamide) (MBAA) into the perovskite layer and by using poly(3-hexylthiophene) as the hole transporting material. The lone electron pairs of-NH and-CO units of MBAA are designed to form coordination bonding with Sn2+ in the B-γCsSnI3, resulting in a reduced defect (Sn4+) density and better stability under multiple conditions for the perovskite light absorber. After a modification, the highest power conversion efficiency (PCE) of 7.50% is documented under an ambient-Air condition for the unencapsulated CsSnI3-MBAA PSC. Furthermore, the MBAA-modified devices sustain 60.2%, 76.5%, and 58.4% of their initial PCEs after 1440 h of storage in an inert condition, after 120 h of storage in an ambient-Air condition, and after 120 h of 1 Sun continuous illumination, respectively.

Original languageEnglish (US)
Pages (from-to)4319-4328
Number of pages10
JournalJournal of the American Chemical Society
Volume143
Issue number11
DOIs
StatePublished - Mar 24 2021

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Ambient-Air-Stable Lead-Free CsSnI3Solar Cells with Greater than 7.5% Efficiency'. Together they form a unique fingerprint.

Cite this