TY - JOUR
T1 - Aminopropyltransferases
T2 - Function, structure and genetics
AU - Ikeguchi, Yoshihiko
AU - Bewley, Maria C.
AU - Pegg, Anthony E.
N1 - Funding Information:
Research on aminopropyltransferases in the author’s laboratory is supported by grant GM27290 from the National Institutes of Health, Bethesda, Md. We thank Drs. S.V. Korolev and A. Savchenko for help with Fig. 1.
PY - 2006/1
Y1 - 2006/1
N2 - Aminopropyltransferases use decarboxylated S-adenosylmethionine as an aminopropyl donor and an amine acceptor to form polyamines. This review covers their structure, mechanism of action, inhibition, regulation and function. The best known aminopropyl-transferases are spermidine synthase and spermine synthase but other members of this family including an N1- aminopropylagmatine synthase have been characterized. Spermidine synthase is an essential gene in eukaryotes and is very widely distributed. Key regions in the active site, which are very highly conserved, were identified by structural studies with spermidine synthase from Thermotoga maritima bound to S-adenosyl-1,8-diamino-3-thiooctane, a multisubstrate analog inhibitor. A general mechanism for catalysis by aminopropyltransferases can be proposed based on these studies. Spermine synthase is less widely distributed and is not essential for growth in yeast. However, Gy mice lacking spermine synthase have multiple symptoms including a profound growth retardation, sterility, deafness, neurological abnormalities and a propensity to sudden death, which can all be prevented by transgenic expression of spermine synthase. A large reduction in spermine synthase in human males due to a splice site variant causes Snyder-Robinson syndrome with mental retardation, hypotonia and skeletal abnormalities.
AB - Aminopropyltransferases use decarboxylated S-adenosylmethionine as an aminopropyl donor and an amine acceptor to form polyamines. This review covers their structure, mechanism of action, inhibition, regulation and function. The best known aminopropyl-transferases are spermidine synthase and spermine synthase but other members of this family including an N1- aminopropylagmatine synthase have been characterized. Spermidine synthase is an essential gene in eukaryotes and is very widely distributed. Key regions in the active site, which are very highly conserved, were identified by structural studies with spermidine synthase from Thermotoga maritima bound to S-adenosyl-1,8-diamino-3-thiooctane, a multisubstrate analog inhibitor. A general mechanism for catalysis by aminopropyltransferases can be proposed based on these studies. Spermine synthase is less widely distributed and is not essential for growth in yeast. However, Gy mice lacking spermine synthase have multiple symptoms including a profound growth retardation, sterility, deafness, neurological abnormalities and a propensity to sudden death, which can all be prevented by transgenic expression of spermine synthase. A large reduction in spermine synthase in human males due to a splice site variant causes Snyder-Robinson syndrome with mental retardation, hypotonia and skeletal abnormalities.
UR - http://www.scopus.com/inward/record.url?scp=32944472945&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=32944472945&partnerID=8YFLogxK
U2 - 10.1093/jb/mvj019
DO - 10.1093/jb/mvj019
M3 - Short survey
C2 - 16428313
AN - SCOPUS:32944472945
SN - 0021-924X
VL - 139
SP - 1
EP - 9
JO - Journal of Biochemistry
JF - Journal of Biochemistry
IS - 1
ER -