Ammonia electro-oxidation mechanism on the platinum (100) surface

Spencer W. Wallace, Ian T. McCrum, Michael J. Janik

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

The catalytic electrochemical oxidation of ammonia is a structure-sensitive reaction that will potentially play a role in future energy systems, including portable fuel cells and the elimination of harmful pollutants. Platinum is an ideal catalyst for this reaction because of its selectivity toward the formation of nitrogen gas. The Pt (100) facet shows much faster ammonia electroxidation than other facets of Pt, however the elementary reaction steps responsible for this phenomenon are not understood. Density functional theory (DFT) calculations are used to determine elementary reaction thermodynamics and kinetics. Absorbed NH2* formation is rapid and this intermediate is very stable on Pt (100). High coverage NH2* binds at atop sites, enabling favorable N–N bond formation. The faster rate of ammonia oxidation on Pt (100) results from the low barrier of N2H4* formation resulting from NH2* dimerization at high coverage. Understanding the reactivity of ammonia oxidation of Pt (100) can aid in electrochemical reaction mechanism development and catalyst design.

Original languageEnglish (US)
Pages (from-to)50-57
Number of pages8
JournalCatalysis Today
Volume371
DOIs
StatePublished - Jul 1 2021

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry

Fingerprint

Dive into the research topics of 'Ammonia electro-oxidation mechanism on the platinum (100) surface'. Together they form a unique fingerprint.

Cite this