Abstract
We study ample stable vector bundles on minimal rational surfaces. We give a complete classification of those moduli spaces for which the general stable bundle is both ample and globally generated. We also prove that if V is any stable bundle, then a large enough direct sum (Formula presented.) has ample deformations unless there is an obvious numerical reason why it cannot. Previous work in this area has mostly focused on rank two bundles and relied primarily on classical sconstructions such as the Serre construction. In contrast, we use recent advances in moduli of vector bundles to obtain strong results for vector bundles of any rank.
Original language | English (US) |
---|---|
Pages (from-to) | 3744-3760 |
Number of pages | 17 |
Journal | Communications in Algebra |
Volume | 50 |
Issue number | 9 |
DOIs | |
State | Published - 2022 |
All Science Journal Classification (ASJC) codes
- Algebra and Number Theory