Abstract
The present work is concerned with the study of the swimming of flagellated microscopic organisms, which employ a single flagellum for propulsion in a fluid flowing through a porous medium. The flow is modeled by appropriate equations and the organism is modeled by an infinite flexible but inextensible transversely waving sheet, which represents approximately the flagellum. The equations of motion are solved subject to the boundary conditions, and expressions for the velocity of propulsion of the microscopic organism are obtained. Certain allied cases involving the viscosity in combination with the effective viscosity of the medium are also investigated. A creeping flow model is also analyzed. Finally, purely from a mathematical standpoint, all cases with large permeability are shown to follow the results of swimming of such organisms in a viscous fluid (discounting the pores).
Original language | English (US) |
---|---|
Pages (from-to) | 235-241 |
Number of pages | 7 |
Journal | Journal of Porous Media |
Volume | 6 |
Issue number | 4 |
DOIs | |
State | Published - 2003 |
All Science Journal Classification (ASJC) codes
- Modeling and Simulation
- Biomedical Engineering
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering