An Existence Theorem for a Nonlocal Global Pandemic Model for Insect-Borne Diseases

John R. Cannon, Daniel J. Galiffa

Research output: Contribution to journalArticlepeer-review

Abstract

We construct and analyze a nonlocal global pandemic model that comprises a system of two nonlocal integrodifferential equations (functional differential equations) and an ordinary differential equation. This model was constructed by considering a spherical coordinate transformation of a previously established epidemiology model that can be applied to insect-borne diseases, like yellow fever. This transformation amounts to a nonlocal boundary value problem on the unit sphere and therefore can be interpreted as a global pandemic model for insect-borne diseases. We ultimately show that a weak solution to the weak formulation of this model exists using a fixed point argument, which calls upon the construction of a weak formulation and the existence and uniqueness of an auxiliary problem.

Original languageEnglish (US)
Article number187685
JournalInternational Journal of Differential Equations
Volume2014
DOIs
StatePublished - 2014

All Science Journal Classification (ASJC) codes

  • Analysis
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'An Existence Theorem for a Nonlocal Global Pandemic Model for Insect-Borne Diseases'. Together they form a unique fingerprint.

Cite this