TY - JOUR
T1 - An expectation formula for the multivariate dirichlet distribution
AU - Letac, Gérard
AU - Massam, Hélène
AU - Richards, Donald
N1 - Funding Information:
1Research supported in part by the National Science Foundation under Grant DMS-9703705.
PY - 2001/4
Y1 - 2001/4
N2 - Suppose that the random vector (X1, …, Xq) follows a Dirichlet distribution on Rq + with parameter (p1, …, pq)∈Rq +. For f1, …, fq>0, it is well-known that E(f1X1+…+fqXq) -(p1+…+pq)=f-p1 1…f-pq q. In this paper, we generalize this expectation formula to the singular and non-singular multivariate Dirichlet distributions as follows. Let Ωr denote the cone of all r×r positive-definite real symmetric matrices. For x∈Ωr and 1≤j≤r, let detjx denote the jth principal minor of x. For s=(s1, …, sr)∈Rr, the generalized power function of x∈Ωr is the function Δs(x)=(det1x)s1-s2(det2x) s2-s3…(detr-1x)sr-1-sr(detrx) sr; further, for any t∈R, we denote by s+t the vector (s1+t, …, sr+t). Suppose X1, …, Xq∈Ωr are random matrices such that (X1, …, Xq) follows a multivariate Dirichlet distribution with parameters p1, …, pq. Then we evaluate the expectation E[Δs1(X1)…Δsq(X q)Δs1+…+sq+p((a+f1X 1+…+fqXq)-1)], where a∈Ωr, p=p1+…+pq, f1, …, fq>0, and s1, …, sq each belong to an appropriate subset of Rr +. The result obtained is parallel to that given above for the univariate case, and remains valid even if some of the Xj's are singular. Our derivation utilizes the framework of symmetric cones, so that our results are valid for multivariate Dirichlet distributions on all symmetric cones.
AB - Suppose that the random vector (X1, …, Xq) follows a Dirichlet distribution on Rq + with parameter (p1, …, pq)∈Rq +. For f1, …, fq>0, it is well-known that E(f1X1+…+fqXq) -(p1+…+pq)=f-p1 1…f-pq q. In this paper, we generalize this expectation formula to the singular and non-singular multivariate Dirichlet distributions as follows. Let Ωr denote the cone of all r×r positive-definite real symmetric matrices. For x∈Ωr and 1≤j≤r, let detjx denote the jth principal minor of x. For s=(s1, …, sr)∈Rr, the generalized power function of x∈Ωr is the function Δs(x)=(det1x)s1-s2(det2x) s2-s3…(detr-1x)sr-1-sr(detrx) sr; further, for any t∈R, we denote by s+t the vector (s1+t, …, sr+t). Suppose X1, …, Xq∈Ωr are random matrices such that (X1, …, Xq) follows a multivariate Dirichlet distribution with parameters p1, …, pq. Then we evaluate the expectation E[Δs1(X1)…Δsq(X q)Δs1+…+sq+p((a+f1X 1+…+fqXq)-1)], where a∈Ωr, p=p1+…+pq, f1, …, fq>0, and s1, …, sq each belong to an appropriate subset of Rr +. The result obtained is parallel to that given above for the univariate case, and remains valid even if some of the Xj's are singular. Our derivation utilizes the framework of symmetric cones, so that our results are valid for multivariate Dirichlet distributions on all symmetric cones.
UR - http://www.scopus.com/inward/record.url?scp=0001402362&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001402362&partnerID=8YFLogxK
U2 - 10.1006/jmva.2000.1928
DO - 10.1006/jmva.2000.1928
M3 - Article
AN - SCOPUS:0001402362
SN - 0047-259X
VL - 77
SP - 117
EP - 137
JO - Journal of Multivariate Analysis
JF - Journal of Multivariate Analysis
IS - 1
ER -