Abstract
Carlitz' bipartition identity is extended to a multipartite partition identity by the introduction of the summatory maximum function: smax(n1, n2,., nr) = n1 + n2 +. + nr (r - 1)min(n1, n2,., nr). Let π0(n1, n2,., nr) denote the number of partitions of (n1, n2,., nr) in which the minimum coordinate of each part is not less then the summatory maximum of the next part. Let πl(nl, n2,., nr) denote the number of partitions of (n1, n2,., nr) in which each part has one of the 2r 1 forms: (a + 1, a, a,.a), (a, a + 1, a,., a). (a, a, a,., a+ 1), (ra + 2, ra + 2,., ra + 2), (ra + 3, ra + 3,., ra + 3),., (ra + r, ra + r,., ra + r). Theorem: π0(n1,., nr) = π1(n1,., nr).
Original language | English (US) |
---|---|
Pages (from-to) | 180-184 |
Number of pages | 5 |
Journal | Proceedings of the American Mathematical Society |
Volume | 63 |
Issue number | 1 |
DOIs | |
State | Published - Mar 1977 |
All Science Journal Classification (ASJC) codes
- General Mathematics
- Applied Mathematics