An improved closed-loop heat extraction method from geothermal resources

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Disposal of produced water and induced earthquakes are two major issues that have endangered development of the geothermal energy as a renewable source of energy. To avoid these problems, circulation of a low-boiling working fluid in a closed loop has been proposed; however; since the major mechanism in this method for heat extraction is conduction rather than convection and additionally the heat conduction is limited to the wellbore surface. To overcome this shortcoming, the formation can be fractured with high conductivity material (for instance, silicon carbide ceramic proppants or cements with silane and silica fume as admixtures) to artificially increase the contact area between the "working fluid" and the reservoir. Our calculations show that fracturing increases the contact area by thousand times, additionally, the fracturing materials reinforce and stressed the formation, which reduce the risk of seismic activity due to temperature or pressure changes of the system during the production.

Original languageEnglish (US)
Article number042904
JournalJournal of Energy Resources Technology, Transactions of the ASME
Volume135
Issue number4
DOIs
StatePublished - Dec 2013

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Mechanical Engineering
  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'An improved closed-loop heat extraction method from geothermal resources'. Together they form a unique fingerprint.

Cite this