Abstract
The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (Eμ>1TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(Eμ) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(Eμ), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.
Original language | English (US) |
---|---|
Pages (from-to) | 190-198 |
Number of pages | 9 |
Journal | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Volume | 703 |
DOIs | |
State | Published - 2013 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
- Instrumentation
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'An improved method for measuring muon energy using the truncated mean of dE/dx'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 703, 2013, p. 190-198.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - An improved method for measuring muon energy using the truncated mean of dE/dx
AU - Abbasi, R.
AU - Abdou, Y.
AU - Ackermann, M.
AU - Adams, J.
AU - Aguilar, J. A.
AU - Ahlers, M.
AU - Altmann, D.
AU - Andeen, K.
AU - Auffenberg, J.
AU - Bai, X.
AU - Baker, M.
AU - Barwick, S. W.
AU - Baum, V.
AU - Bay, R.
AU - Beattie, K.
AU - Beatty, J. J.
AU - Bechet, S.
AU - Becker Tjus, J.
AU - Becker, K. H.
AU - Bell, M.
AU - Benabderrahmane, M. L.
AU - Benzvi, S.
AU - Berdermann, J.
AU - Berghaus, P.
AU - Berley, D.
AU - Bernardini, E.
AU - Bertrand, D.
AU - Besson, D. Z.
AU - Bindig, D.
AU - Bissok, M.
AU - Blaufuss, E.
AU - Blumenthal, J.
AU - Boersma, D. J.
AU - Bohm, C.
AU - Bose, D.
AU - Böser, S.
AU - Botner, O.
AU - Brayeur, L.
AU - Brown, A. M.
AU - Bruijn, R.
AU - Brunner, J.
AU - Buitink, S.
AU - Carson, M.
AU - Casey, J.
AU - Casier, M.
AU - Chirkin, D.
AU - Christy, B.
AU - Clevermann, F.
AU - Cohen, S.
AU - Cowen, D. F.
AU - Cruz Silva, A. H.
AU - Danninger, M.
AU - Daughhetee, J.
AU - Davis, J. C.
AU - De Clercq, C.
AU - Descamps, F.
AU - Desiati, P.
AU - De Vries-Uiterweerd, G.
AU - Deyoung, T.
AU - Díaz-Vélez, J. C.
AU - Dreyer, J.
AU - Dumm, J. P.
AU - Dunkman, M.
AU - Eagan, R.
AU - Eisch, J.
AU - Ellsworth, R. W.
AU - Engdegård, O.
AU - Euler, S.
AU - Evenson, P. A.
AU - Fadiran, O.
AU - Fazely, A. R.
AU - Fedynitch, A.
AU - Feintzeig, J.
AU - Feusels, T.
AU - Filimonov, K.
AU - Finley, C.
AU - Fischer-Wasels, T.
AU - Flis, S.
AU - Franckowiak, A.
AU - Franke, R.
AU - Frantzen, K.
AU - Fuchs, T.
AU - Gaisser, T. K.
AU - Gallagher, J.
AU - Gerhardt, L.
AU - Gladstone, L.
AU - Glüsenkamp, T.
AU - Goldschmidt, A.
AU - Goodman, J. A.
AU - Góra, D.
AU - Grant, D.
AU - Groß, A.
AU - Grullon, S.
AU - Gurtner, M.
AU - Ha, C.
AU - Haj Ismail, A.
AU - Hallgren, A.
AU - Halzen, F.
AU - Hanson, K.
AU - Heereman, D.
AU - Heimann, P.
AU - Heinen, D.
AU - Helbing, K.
AU - Hellauer, R.
AU - Hickford, S.
AU - Hill, G. C.
AU - Hoffman, K. D.
AU - Hoffmann, R.
AU - Homeier, A.
AU - Hoshina, K.
AU - Huelsnitz, W.
AU - Hulth, P. O.
AU - Hultqvist, K.
AU - Hussain, S.
AU - Ishihara, A.
AU - Jacobi, E.
AU - Jacobsen, J.
AU - Japaridze, G. S.
AU - Jlelati, O.
AU - Kappes, A.
AU - Karg, T.
AU - Karle, A.
AU - Kiryluk, J.
AU - Kislat, F.
AU - Kläs, J.
AU - Klein, S. R.
AU - Köhne, J. H.
AU - Kohnen, G.
AU - Kolanoski, H.
AU - Köpke, L.
AU - Kopper, C.
AU - Kopper, S.
AU - Koskinen, D. J.
AU - Kowalski, M.
AU - Krasberg, M.
AU - Kroll, G.
AU - Kunnen, J.
AU - Kurahashi, N.
AU - Kuwabara, T.
AU - Labare, M.
AU - Laihem, K.
AU - Landsman, H.
AU - Larson, M. J.
AU - Lauer, R.
AU - Lesiak-Bzdak, M.
AU - Lünemann, J.
AU - Madsen, J.
AU - Maruyama, R.
AU - Mase, K.
AU - Matis, H. S.
AU - McNally, F.
AU - Meagher, K.
AU - Merck, M.
AU - Mészáros, P.
AU - Meures, T.
AU - Miarecki, S.
AU - Middell, E.
AU - Milke, N.
AU - Miller, J.
AU - Mohrmann, L.
AU - Montaruli, T.
AU - Morse, R.
AU - Movit, S. M.
AU - Nahnhauer, R.
AU - Naumann, U.
AU - Nowicki, S. C.
AU - Nygren, D. R.
AU - Obertacke, A.
AU - Odrowski, S.
AU - Olivas, A.
AU - Olivo, M.
AU - O'Murchadha, A.
AU - Panknin, S.
AU - Paul, L.
AU - Pepper, J. A.
AU - Pérez De Los Heros, C.
AU - Pieloth, D.
AU - Pirk, N.
AU - Posselt, J.
AU - Price, P. B.
AU - Przybylski, G. T.
AU - Rädel, L.
AU - Rawlins, K.
AU - Redl, P.
AU - Resconi, E.
AU - Rhode, W.
AU - Ribordy, M.
AU - Richman, M.
AU - Riedel, B.
AU - Rodrigues, J. P.
AU - Rothmaier, F.
AU - Rott, C.
AU - Ruhe, T.
AU - Ruzybayev, B.
AU - Ryckbosch, D.
AU - Saba, S. M.
AU - Salameh, T.
AU - Sander, H. G.
AU - Santander, M.
AU - Sarkar, S.
AU - Schatto, K.
AU - Scheel, M.
AU - Scheriau, F.
AU - Schmidt, T.
AU - Schmitz, M.
AU - Schoenen, S.
AU - Schöneberg, S.
AU - Schönherr, L.
AU - Schönwald, A.
AU - Schukraft, A.
AU - Schulte, L.
AU - Schulz, O.
AU - Seckel, D.
AU - Seo, S. H.
AU - Sestayo, Y.
AU - Seunarine, S.
AU - Smith, M. W.E.
AU - Soiron, M.
AU - Soldin, D.
AU - Spiczak, G. M.
AU - Spiering, C.
AU - Stamatikos, M.
AU - Stanev, T.
AU - Stasik, A.
AU - Stezelberger, T.
AU - Stokstad, R. G.
AU - Stößl, A.
AU - Strahler, E. A.
AU - Ström, R.
AU - Sullivan, G. W.
AU - Taavola, H.
AU - Taboada, I.
AU - Tamburro, A.
AU - Ter-Antonyan, S.
AU - Tilav, S.
AU - Toale, P. A.
AU - Toscano, S.
AU - Usner, M.
AU - Van Der Drift, D.
AU - Van Eijndhoven, N.
AU - Van Overloop, A.
AU - Van Santen, J.
AU - Vehring, M.
AU - Voge, M.
AU - Walck, C.
AU - Waldenmaier, T.
AU - Wallraff, M.
AU - Walter, M.
AU - Wasserman, R.
AU - Weaver, Ch
AU - Wendt, C.
AU - Westerhoff, S.
AU - Whitehorn, N.
AU - Wiebe, K.
AU - Wiebusch, C. H.
AU - Williams, D. R.
AU - Wissing, H.
AU - Wolf, M.
AU - Wood, T. R.
AU - Woschnagg, K.
AU - Xu, C.
AU - Xu, D. L.
AU - Xu, X. W.
AU - Yanez, J. P.
AU - Yodh, G.
AU - Yoshida, S.
AU - Zarzhitsky, P.
AU - Ziemann, J.
AU - Zilles, A.
AU - Zoll, M.
N1 - Funding Information: We acknowledge the support from the following agencies: US National Science Foundation-Office of Polar Programs, US National Science Foundation—Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin—Madison, the Open Science Grid (OSG) grid infrastructure, US Department of Energy, National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) Grid Computing Resources, the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland.
PY - 2013
Y1 - 2013
N2 - The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (Eμ>1TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(Eμ) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(Eμ), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.
AB - The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (Eμ>1TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(Eμ) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(Eμ), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.
UR - http://www.scopus.com/inward/record.url?scp=84872098761&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872098761&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2012.11.081
DO - 10.1016/j.nima.2012.11.081
M3 - Article
AN - SCOPUS:84872098761
SN - 0168-9002
VL - 703
SP - 190
EP - 198
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
ER -