An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection

Afnizanfaizal Abdullah, Safaai Deris, Mohd Saberi Mohamad, Sohail Anwar

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.

Original languageEnglish (US)
Article numbere61258
JournalPloS one
Volume8
Issue number4
DOIs
StatePublished - Apr 11 2013

All Science Journal Classification (ASJC) codes

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection'. Together they form a unique fingerprint.

Cite this