TY - GEN
T1 - An Improvement of Reed’s Treewidth Approximation
AU - Belbasi, Mahdi
AU - Fürer, Martin
N1 - Publisher Copyright:
© 2021, Springer Nature Switzerland AG.
PY - 2021
Y1 - 2021
N2 - We present a new approximation algorithm for the treewidth problem which constructs a corresponding tree decomposition as well. Our algorithm is a faster variation of Reed’s classical algorithm. For the benefit of the reader, and to be able to compare these two algorithms, we start with a detailed time analysis for Reed’s algorithm. We fill in many details that have been omitted in Reed’s paper. Computing tree decompositions parameterized by the treewidth k is fixed parameter tractable (FPT), meaning that there are algorithms running in time O(f(k)g(n)) where f is a computable function, g(n) is polynomial in n, and n is the number of vertices. An analysis of Reed’s algorithm shows f(k) = 2O ( k log k ) and g(n) = nlog n for a 5-approximation. Reed simply claims time O(nlog n) for bounded k for his constant factor approximation algorithm, but the bound of 2Ω ( k log k )nlog n is well known. From a practical point of view, we notice that the time of Reed’s algorithm also contains a term of O(k2224 knlog n), which for small k is much worse than the asymptotically leading term of 2O ( k log k )nlog n. We analyze f(k) more precisely, because the purpose of this paper is to improve the running times for all reasonably small values of k. Our algorithm runs in O(f(k) nlog n) too, but with a much smaller dependence on k. In our case, f(k) = 2O ( k ). This algorithm is simple and fast, especially for small values of k. We should mention that Bodlaender et al. [2016] have an asymptotically faster algorithm running in time 2O ( k )n. It relies on a very sophisticated data structure and does not claim to be useful for small values of k.
AB - We present a new approximation algorithm for the treewidth problem which constructs a corresponding tree decomposition as well. Our algorithm is a faster variation of Reed’s classical algorithm. For the benefit of the reader, and to be able to compare these two algorithms, we start with a detailed time analysis for Reed’s algorithm. We fill in many details that have been omitted in Reed’s paper. Computing tree decompositions parameterized by the treewidth k is fixed parameter tractable (FPT), meaning that there are algorithms running in time O(f(k)g(n)) where f is a computable function, g(n) is polynomial in n, and n is the number of vertices. An analysis of Reed’s algorithm shows f(k) = 2O ( k log k ) and g(n) = nlog n for a 5-approximation. Reed simply claims time O(nlog n) for bounded k for his constant factor approximation algorithm, but the bound of 2Ω ( k log k )nlog n is well known. From a practical point of view, we notice that the time of Reed’s algorithm also contains a term of O(k2224 knlog n), which for small k is much worse than the asymptotically leading term of 2O ( k log k )nlog n. We analyze f(k) more precisely, because the purpose of this paper is to improve the running times for all reasonably small values of k. Our algorithm runs in O(f(k) nlog n) too, but with a much smaller dependence on k. In our case, f(k) = 2O ( k ). This algorithm is simple and fast, especially for small values of k. We should mention that Bodlaender et al. [2016] have an asymptotically faster algorithm running in time 2O ( k )n. It relies on a very sophisticated data structure and does not claim to be useful for small values of k.
UR - http://www.scopus.com/inward/record.url?scp=85102755476&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102755476&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-68211-8_14
DO - 10.1007/978-3-030-68211-8_14
M3 - Conference contribution
AN - SCOPUS:85102755476
SN - 9783030682101
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 166
EP - 181
BT - WALCOM
A2 - Uehara, Ryuhei
A2 - Hong, Seok-Hee
A2 - Nandy, Subhas C.
PB - Springer Science and Business Media Deutschland GmbH
T2 - 15th International Conference on Algorithms and Computation, WALCOM 2021
Y2 - 28 February 2021 through 2 March 2021
ER -