TY - JOUR
T1 - An Index Formula for Perturbed Dirac Operators on Lie Manifolds
AU - Carvalho, Catarina
AU - Nistor, Victor
N1 - Publisher Copyright:
© 2013, Mathematica Josephina, Inc.
PY - 2014/10
Y1 - 2014/10
N2 - We prove an index formula for a class of Dirac operators coupled with unbounded potentials, also called “Callias-type operators”. More precisely, we study operators of the form (Formula presented.), where (Formula presented.) is a Dirac operator and V is an unbounded potential at infinity on a non-compact manifold M0. We assume that M0 is a Lie manifold with compactification denoted by M. Examples of Lie manifolds are provided by asymptotically Euclidean or asymptotically hyperbolic spaces and many others. The potential V is required to be such that V is invertible outside a compact set K and V−1 extends to a smooth vector bundle endomorphism over M∖K that vanishes on all faces of M in a controlled way. Using tools from analysis on non-compact Riemannian manifolds, we show that the computation of the index of P reduces to the computation of the index of an elliptic pseudodifferential operator of order zero on M0 that is a multiplication operator at infinity. The index formula for P can then be obtained from the results of Carvalho (in K-theory 36(1–2):1–31, 2005). As a first step in the proof, we obtain a similar index formula for general pseudodifferential operators coupled with bounded potentials that are invertible at infinity on a restricted class of Lie manifolds, so-called asymptotically commutative, which includes, for instance, the scattering and double-edge calculi. Our results extend many earlier, particular results on Callias-type operators.
AB - We prove an index formula for a class of Dirac operators coupled with unbounded potentials, also called “Callias-type operators”. More precisely, we study operators of the form (Formula presented.), where (Formula presented.) is a Dirac operator and V is an unbounded potential at infinity on a non-compact manifold M0. We assume that M0 is a Lie manifold with compactification denoted by M. Examples of Lie manifolds are provided by asymptotically Euclidean or asymptotically hyperbolic spaces and many others. The potential V is required to be such that V is invertible outside a compact set K and V−1 extends to a smooth vector bundle endomorphism over M∖K that vanishes on all faces of M in a controlled way. Using tools from analysis on non-compact Riemannian manifolds, we show that the computation of the index of P reduces to the computation of the index of an elliptic pseudodifferential operator of order zero on M0 that is a multiplication operator at infinity. The index formula for P can then be obtained from the results of Carvalho (in K-theory 36(1–2):1–31, 2005). As a first step in the proof, we obtain a similar index formula for general pseudodifferential operators coupled with bounded potentials that are invertible at infinity on a restricted class of Lie manifolds, so-called asymptotically commutative, which includes, for instance, the scattering and double-edge calculi. Our results extend many earlier, particular results on Callias-type operators.
UR - http://www.scopus.com/inward/record.url?scp=84920389834&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84920389834&partnerID=8YFLogxK
U2 - 10.1007/s12220-013-9396-7
DO - 10.1007/s12220-013-9396-7
M3 - Article
AN - SCOPUS:84920389834
SN - 1050-6926
VL - 24
SP - 1808
EP - 1843
JO - Journal of Geometric Analysis
JF - Journal of Geometric Analysis
IS - 4
ER -