TY - GEN
T1 - An interactive and immersive remote education platform based on commodity devices
AU - Chen, Jiangong
AU - Qian, Feng
AU - Li, Bin
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/5/10
Y1 - 2021/5/10
N2 - Virtual reality (VR) holds a great potential to provide interactive and immersive learning experiences for students in remote education by using existing mobile devices, which is extremely meaningful during the current pandemic. In such a VR application, satisfactory user experience requires: 1) high-resolution panoramic image rendering; 2) high frame rate; 3) synchronization among users. This requires that either mobile devices perform fast image rendering or today's wireless network can support multi-Gbps traffic with extremely low delay, neither of which is the case in current practice. In this demo, we develop a platform for interactive and immersive remote education based on commodity devices, where a server performs rendering to ensure that the rendered images have high-resolution (2560×1440 pixels) and are displayed at a high frame rate (60 frames per second) on the client-side. We further leverage motion prediction to overcome the diverse round-trip time (RTT) between a server and users and ensure synchronization among users (average 9.2 ms frame latency difference among users), which improves at least 60% and 20% compared to the existing local-rendering and server-rendering methods, respectively.
AB - Virtual reality (VR) holds a great potential to provide interactive and immersive learning experiences for students in remote education by using existing mobile devices, which is extremely meaningful during the current pandemic. In such a VR application, satisfactory user experience requires: 1) high-resolution panoramic image rendering; 2) high frame rate; 3) synchronization among users. This requires that either mobile devices perform fast image rendering or today's wireless network can support multi-Gbps traffic with extremely low delay, neither of which is the case in current practice. In this demo, we develop a platform for interactive and immersive remote education based on commodity devices, where a server performs rendering to ensure that the rendered images have high-resolution (2560×1440 pixels) and are displayed at a high frame rate (60 frames per second) on the client-side. We further leverage motion prediction to overcome the diverse round-trip time (RTT) between a server and users and ensure synchronization among users (average 9.2 ms frame latency difference among users), which improves at least 60% and 20% compared to the existing local-rendering and server-rendering methods, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85113314617&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85113314617&partnerID=8YFLogxK
U2 - 10.1109/INFOCOMWKSHPS51825.2021.9484492
DO - 10.1109/INFOCOMWKSHPS51825.2021.9484492
M3 - Conference contribution
AN - SCOPUS:85113314617
T3 - IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2021
BT - IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2021
Y2 - 9 May 2021 through 12 May 2021
ER -