TY - GEN
T1 - An investigation into the effects of curved beam elements on the out-of-plane stiffness profile in a compliant large-displacement finger
AU - Goemans, Valerie Y.
AU - Herder, Just L.
AU - Frecker, Mary I.
PY - 2013
Y1 - 2013
N2 - Compliant mechanisms have many advantages over rigid-link mechanisms. However, one of the challenges of compliant mechanisms is the trade-off between a large range of motion and a high out-of-plane stiffness. Furthermore, the out-of-plane stiffness is shown to vary over the range of motion. Especially for large-displacement compliant mechanisms this can be by a significant amount. In this paper the use of curved beam elements in a compliant mechanism is shown to have impact on this tradeoff. The influence of curved beam elements on the out-of-plane stiffness over the entire range of motion is presented for simple structures such as a single beam element and double beam elements, as well as a compliant finger. With the use of a genetic algorithm optimization, the difference in performance of a design with only straight beam elements versus one with curved beam elements is highlighted and the effect on the out-of-plane stiffness profile is presented. The optimization with curved beam elements results in solutions with a performance in terms of objective function values that cannot be found by the optimization with only straight beam elements. It is shown that for simple structures the use of curved beam elements has a large influence on the shape of the out-of-plane stiffness profile along the range of motion, while for the compliant finger the influence is mainly in the variables of the out-of-plane stiffness profile.
AB - Compliant mechanisms have many advantages over rigid-link mechanisms. However, one of the challenges of compliant mechanisms is the trade-off between a large range of motion and a high out-of-plane stiffness. Furthermore, the out-of-plane stiffness is shown to vary over the range of motion. Especially for large-displacement compliant mechanisms this can be by a significant amount. In this paper the use of curved beam elements in a compliant mechanism is shown to have impact on this tradeoff. The influence of curved beam elements on the out-of-plane stiffness over the entire range of motion is presented for simple structures such as a single beam element and double beam elements, as well as a compliant finger. With the use of a genetic algorithm optimization, the difference in performance of a design with only straight beam elements versus one with curved beam elements is highlighted and the effect on the out-of-plane stiffness profile is presented. The optimization with curved beam elements results in solutions with a performance in terms of objective function values that cannot be found by the optimization with only straight beam elements. It is shown that for simple structures the use of curved beam elements has a large influence on the shape of the out-of-plane stiffness profile along the range of motion, while for the compliant finger the influence is mainly in the variables of the out-of-plane stiffness profile.
UR - http://www.scopus.com/inward/record.url?scp=84896990162&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896990162&partnerID=8YFLogxK
U2 - 10.1115/DETC2013-12623
DO - 10.1115/DETC2013-12623
M3 - Conference contribution
AN - SCOPUS:84896990162
SN - 9780791855935
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 37th Mechanisms and Robotics Conference
PB - American Society of Mechanical Engineers
T2 - ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013
Y2 - 4 August 2013 through 7 August 2013
ER -