An investigation of airflow distributions with booster fan for a large opening mine through field study and CFD modeling

Nathan Gendrue, Shimin Liu, Sekhar Bhattacharyya, Ronald Clister

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


In this study, we conducted a field survey for the large opening mine with the survey data serving as the numerical modeling inputs to investigate the booster fan airflow distribution using a computational fluid dynamics (CFD) model. A CFD model was created with a booster fan inside the model domain, the airflow distribution patterns around the booster fan were then examined to gain insights on the booster fans impact on the air distribution in the dedicated mining section. Based on the modeling results, the booster fan is an effective ventilation control for airflow direction in large opening mine and the booster fan placement can significantly influence the effectiveness of face pollutants’ removal through airflow recirculation. The fan can boost air velocity to create the multi-pillar scale airflow recirculation to dilute the extraction heading pollutants. Furthermore, the typical continuous traverse done by many mine operators, which only covering part of the entire cross section, may be inadequate around booster fans with errors ranging from 35% to 210%. The airflow calculated at the entry adjacent to the booster fan was 25% that of the fan setting with the subsequent entries exchange diminishing by ∼65.2% per entry indicating streamlining of airflow in the booster fan entry. While the geometry of the mine will play a significant role in determining the airflow distributions this study lays the groundwork for future studies on booster fan placement optimization and effectiveness for face ventilation.

Original languageEnglish (US)
Article number104856
JournalTunnelling and Underground Space Technology
StatePublished - Feb 2023

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • Geotechnical Engineering and Engineering Geology


Dive into the research topics of 'An investigation of airflow distributions with booster fan for a large opening mine through field study and CFD modeling'. Together they form a unique fingerprint.

Cite this