An MRAS-type estimator for the speed, flux magnitude and rotor flux angle of the induction motor using sliding mode

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

The paper discusses the problem of estimating the speed, the flux magnitude and the rotor flux angle of the induction motor (IM) and presents an estimation method based on two Sliding Mode Observers (SMOs) and the Model Reference Adaptive System (MRAS) technique. The method is based on implementation of two SMOs that both yield the magnitude of the rotor flux; one observer is the reference model, the other is the adjustable model. The MRAS method is used to adapt the speed signal which is an input into both SMOs. The reference model is designed using the equations of the IM in the rotating reference frame. It is shown that its estimated flux magnitude is insensitive to the input speed. The adjustable model uses the IM equations in the stationary reference frame. Its output fluxes have magnitudes inverse proportional with the input speed; however, their phases are always accurate (this allows estimation of the flux angle). Using MRAS, the speed is corrected such that the flux magnitudes coming out of the two models match. Based on the structure developed, the paper also a speed estimation method. The simulations validate the theoretical development.

Original languageEnglish (US)
Title of host publication2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014
PublisherIEEE Computer Society
Pages719-724
Number of pages6
ISBN (Print)9781479947492
DOIs
StatePublished - Jan 1 2014
Event2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014 - Ischia, Italy
Duration: Jun 18 2014Jun 20 2014

Publication series

Name2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014

Other

Other2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014
Country/TerritoryItaly
CityIschia
Period6/18/146/20/14

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'An MRAS-type estimator for the speed, flux magnitude and rotor flux angle of the induction motor using sliding mode'. Together they form a unique fingerprint.

Cite this