An O-methylflavone from Artemisia afra kills non-replicating hypoxic Mycobacterium tuberculosis

Joshua J. Kellogg, Maria Natalia Alonso, R. Teal Jordan, Junpei Xiao, Juan Hilario Cafiero, Trevor Bush, Xiaoling Chen, Melissa Towler, Pamela Weathers, Scarlet S. Shell

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Ethnopharmacological relevance: African wormwood (Artemisia afra Jacq. ex Willd.) has been used traditionally in southern Africa to treat illnesses causing fever and was recently shown to possess anti-tuberculosis activity. As tuberculosis is an endemic cause of fever in southern Africa, this suggests that the anti-tubercular activity of A. afra may have contributed to its traditional medicinal use. Aim of the study: Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a deadly and debilitating disease globally affecting millions annually. Emerging drug-resistant Mtb strains endanger the efficacy of the current therapies employed to treat tuberculosis; therefore, there is an urgent need to develop novel drugs to combat this disease. Given the reported activity of A. afra against Mtb, we sought to determine the mechanisms by which A. afra inhibits and kills this bacterium. Materials and methods: We used transcriptomics to investigate the impact of Artemisia spp. extracts on Mtb physiology. We then used chromatographic fractionation and biochemometric analyses to identify a bioactive fractions of A. afra extracts and identify an active compound. Results: Transcriptomic analysis revealed that A. afra exerts different effects on Mtb compared to A. annua or artemisinin, suggesting that A. afra possesses other phytochemicals with unique modes of action. A biochemometric study of A. afra resulted in the isolation of an O-methylflavone (1), 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)chromen-4-one, which displayed considerable activity against Mtb strain mc26230 in both log phase growth and metabolically downshifted hypoxic cultures. Conclusions: The present study demonstrated that an O-methylflavone constituent of Artemisia afra explains part of the activity of this plant against Mtb. This result contributes to a mechanistic understanding of the reported anti-tubercular activity of A. afra and highlights the need for further study of this traditional medicinal plant and its active compounds.

Original languageEnglish (US)
Article number118500
JournalJournal of Ethnopharmacology
Volume333
DOIs
StatePublished - Oct 28 2024

All Science Journal Classification (ASJC) codes

  • Pharmacology
  • Drug Discovery

Fingerprint

Dive into the research topics of 'An O-methylflavone from Artemisia afra kills non-replicating hypoxic Mycobacterium tuberculosis'. Together they form a unique fingerprint.

Cite this