Abstract
High-intensity focused ultrasound (HIFU) is a widely used technique capable of providing noninvasive heating and ablation for a wide range of applications. However, the major challenges lie in the determination of the position and the amount of heat deposition over a target area. In order to assure that the thermal area is confined to tumor locations, an optimization method should be employed. Sequential quadratic programming and steepest gradient method with closed-form solution have been previously used to solve this kind of problem. However, these methods are complex and computationally inefficient. The goal of this article is to solve and control the solution of inverse problems with partial differential equation (PDE) constraints. Therefore, a distinguishing challenge of this technique is the handling of large numbers of optimization variables in combination with the complexities of discretized PDEs. In our method, the objective function is formulated as the square difference between the actual thermal dose and the desired one. At each iteration of the optimization procedure, we need to develop and solve the variation problem, the adjoint problem, and the gradient of the objective function. The analytical formula for the gradient is derived and calculated based on the solution of the adjoint problem. Several factors have been taken into consideration to demonstrate the robustness and efficiency of the proposed algorithm. The simulation results for all cases indicate the robustness and the computational efficiency of our proposed method compared to the steepest gradient descent method with the closed-form solution.
Original language | English (US) |
---|---|
Article number | 9270029 |
Pages (from-to) | 1555-1568 |
Number of pages | 14 |
Journal | IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control |
Volume | 68 |
Issue number | 5 |
DOIs | |
State | Published - May 2021 |
All Science Journal Classification (ASJC) codes
- Instrumentation
- Acoustics and Ultrasonics
- Electrical and Electronic Engineering