TY - JOUR
T1 - An RNA-seq study of the mPFC of rats with different addiction phenotypes
AU - McFalls, Ashley J.
AU - Imperio, Ceasar G.
AU - Woodward, Emma
AU - Krikorian, Claire
AU - Stoltsfus, Brooke
AU - Wronowski, Benjamin
AU - Grigson, Patricia S.
AU - Freeman, Willard M.
AU - Vrana, Kent E.
N1 - Funding Information:
The authors thank Robert Brucklacher and Georgina Bixler of the Genome Sciences Core Facility at the Penn State Hershey College of Medicine for assistance with quantitative RT-PCR and RNA extraction and Sarah Ballard of the Department of Neural and Behavioral Sciences, Penn State College of Medicine for assistance with animal handling and protocols.
Publisher Copyright:
© 2022
PY - 2022/12
Y1 - 2022/12
N2 - Addiction is a disease of brain-reward circuitry whereby attention, motivation, memory and emotional systems become enslaved to the goal of seeking and acquiring drug, instead of responding to the natural rewards for which these systems evolved. At the intersection of reward/limbic structures, the medial prefrontal cortex (mPFC) receives and consolidates signals regarding environment and orchestrates the most appropriate response (i.e., decision-making and attention). As such, mPFC function plays a critical role in the vulnerability or resilience to drug addiction. In our model of drug-induced reward devaluation, an outbred group of Sprague-Dawley rats parsed into two distinct drug-taking phenotypes: those, referred to as small suppressors (SS) that readily ingest a heroin-paired sweet cue and then take little drug, and those, referred to large suppressors (LS), that avoid the heroin-paired cue, but then respond greatly for the drug of abuse. In the present study, we analyzed the mPFC transcriptome of rats from these divergent groups to discover differences in gene expression that underlie these distinct phenotypes. Genes found to be differentially expressed were those associated with schizophrenia and dopamine signaling, signal transduction, development and synaptic plasticity. These genes may underlie the circumstance whereby some individuals succumb to addiction, while others do not, and may reveal new pharmacological targets for the treatment of drug addiction.
AB - Addiction is a disease of brain-reward circuitry whereby attention, motivation, memory and emotional systems become enslaved to the goal of seeking and acquiring drug, instead of responding to the natural rewards for which these systems evolved. At the intersection of reward/limbic structures, the medial prefrontal cortex (mPFC) receives and consolidates signals regarding environment and orchestrates the most appropriate response (i.e., decision-making and attention). As such, mPFC function plays a critical role in the vulnerability or resilience to drug addiction. In our model of drug-induced reward devaluation, an outbred group of Sprague-Dawley rats parsed into two distinct drug-taking phenotypes: those, referred to as small suppressors (SS) that readily ingest a heroin-paired sweet cue and then take little drug, and those, referred to large suppressors (LS), that avoid the heroin-paired cue, but then respond greatly for the drug of abuse. In the present study, we analyzed the mPFC transcriptome of rats from these divergent groups to discover differences in gene expression that underlie these distinct phenotypes. Genes found to be differentially expressed were those associated with schizophrenia and dopamine signaling, signal transduction, development and synaptic plasticity. These genes may underlie the circumstance whereby some individuals succumb to addiction, while others do not, and may reveal new pharmacological targets for the treatment of drug addiction.
UR - http://www.scopus.com/inward/record.url?scp=85140981262&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140981262&partnerID=8YFLogxK
U2 - 10.1016/j.brainresbull.2022.09.023
DO - 10.1016/j.brainresbull.2022.09.023
M3 - Article
C2 - 36223840
AN - SCOPUS:85140981262
SN - 0361-9230
VL - 191
SP - 107
EP - 120
JO - Brain Research Bulletin
JF - Brain Research Bulletin
ER -