TY - JOUR
T1 - Anaerobic biodegradation of the isoprenoid biomarkers pristane and phytane
AU - Dawson, Katherine S.
AU - Schaperdoth, Irene
AU - Freeman, Katherine H.
AU - Macalady, Jennifer L.
N1 - Funding Information:
The research was supported by a grant from American Chemical Society Petroleum Research Fund to J.L.M. (48445-AC2) the Penn State Biogeochemical Research Initiative for Education (BRIE) (NSF DGE-9972759), the Penn State Astrobiology Research Center (PSARC), NASA NAI (NNA04CC06A) and a Penn State Biogeochemistry Program fellowship to K.S.D. We thank L. Krumholz for providing a culture of Haloferax sulfurifontis and Z. Zhang and D. Walizer for technical assistance. We also thank C.H. House, J.M. Regan and two anonymous reviewers for valuable discussions and comments towards improving the paper.
PY - 2013/12
Y1 - 2013/12
N2 - Isoprenoids, a diverse class of compounds synthesized by all three domains of life, comprise many of the biomarker compounds used in paleoenvironmental and paleoecological reconstruction of Earth history. These biomarkers include hopanoids, sterols and archaeal membrane lipids. While changes in hydrocarbon profiles in anoxic sediments and oilfields indicate that anaerobic microbial metabolism is involved in the disappearance or alteration of isoprenoids, direct links between specific compounds and their microbial degraders are lacking. Here we describe pristane (Pr) and phytane (Ph) degradation associated with NO3- reduction. We confirmed isoprenoid conversion to CO2 using 13C-labeled Ph. After 120days, dissolved inorganic carbon (DIC) produced in incubations grown with 13C-labeled Ph had a δ13C value of +76.7±11.9‰, significantly higher than values for incubations with unlabeled Ph (-35.7±2.0‰) and those without an added carbon substrate (-30.0±2.1‰). Additional incubations, displayed NO3- reduction after amendment with archaeal diphytanyl glycerol diether (DGD) core lipids, but not in those amended with glycerol diphytanyl glycerol tetraether (GDGT) core lipids. Both 16S rRNA clone libraries and whole cell rRNA-targeted fluorescent in situ hybridization (FISH) indicated that the likely Pr and Ph degrading Bacteria were Gamma proteobacteria, with>99% similarity to Pseudomonas stutzeri.
AB - Isoprenoids, a diverse class of compounds synthesized by all three domains of life, comprise many of the biomarker compounds used in paleoenvironmental and paleoecological reconstruction of Earth history. These biomarkers include hopanoids, sterols and archaeal membrane lipids. While changes in hydrocarbon profiles in anoxic sediments and oilfields indicate that anaerobic microbial metabolism is involved in the disappearance or alteration of isoprenoids, direct links between specific compounds and their microbial degraders are lacking. Here we describe pristane (Pr) and phytane (Ph) degradation associated with NO3- reduction. We confirmed isoprenoid conversion to CO2 using 13C-labeled Ph. After 120days, dissolved inorganic carbon (DIC) produced in incubations grown with 13C-labeled Ph had a δ13C value of +76.7±11.9‰, significantly higher than values for incubations with unlabeled Ph (-35.7±2.0‰) and those without an added carbon substrate (-30.0±2.1‰). Additional incubations, displayed NO3- reduction after amendment with archaeal diphytanyl glycerol diether (DGD) core lipids, but not in those amended with glycerol diphytanyl glycerol tetraether (GDGT) core lipids. Both 16S rRNA clone libraries and whole cell rRNA-targeted fluorescent in situ hybridization (FISH) indicated that the likely Pr and Ph degrading Bacteria were Gamma proteobacteria, with>99% similarity to Pseudomonas stutzeri.
UR - http://www.scopus.com/inward/record.url?scp=84887591267&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84887591267&partnerID=8YFLogxK
U2 - 10.1016/j.orggeochem.2013.10.010
DO - 10.1016/j.orggeochem.2013.10.010
M3 - Article
AN - SCOPUS:84887591267
SN - 0146-6380
VL - 65
SP - 118
EP - 126
JO - Organic Geochemistry
JF - Organic Geochemistry
ER -