TY - JOUR
T1 - Analysis of a soluble calmodulin binding protein from fava bean roots
T2 - Identification of glutamate decarboxylase as a calmodulin-activated enzyme
AU - Ling, Vincent
AU - Snedden, Wayne A.
AU - Shelp, Barry J.
AU - Assmann, Sarah M.
PY - 1994/8
Y1 - 1994/8
N2 - The identity of a soluble 62-kD Ca2+-dependent calmodulin binding protein (CaM-BP) from fava bean seedlings was determined. Using 125I-CaM overlay assays, a class of soluble CaM-BPs was detected in extracts of tissues comprising the axis of 1.5-week-old seedlings, excluding the root tip and emergent leaves. The size of these CaM-BPs was not uniform within all parts of the plant; the apparent molecular masses were 62 kD in roots, 60 kD in stems, and 64 kD in nodules. The root 62-kD CaM-BP was purified, and internal microsequence analysis was performed on the protein. A tryptic peptide derived from the CaM-BP consisted of a 13-residue sequence corresponding to a highly conserved region of glutamate decarboxylase (GAD), an enzyme that catalyzes the α-decarboxylation of glutamate to form the stress-related metabolite γ-aminobutyrate. Activity assays of partially purified, desalted, root GAD revealed a 50% stimulation by the addition of 100 μM Ca2+, a 100% stimulation by the addition of 100 μM Ca2+ plus 100 nM CaM, and no appreciable stimulation by CaM in the absence of added Ca2+. The demonstration that plant GAD is a Ca2+-CaM-stimulated enzyme provides a model in which stress-linked metabolism is modulated by a Ca2+-mediated signal transduction pathway.
AB - The identity of a soluble 62-kD Ca2+-dependent calmodulin binding protein (CaM-BP) from fava bean seedlings was determined. Using 125I-CaM overlay assays, a class of soluble CaM-BPs was detected in extracts of tissues comprising the axis of 1.5-week-old seedlings, excluding the root tip and emergent leaves. The size of these CaM-BPs was not uniform within all parts of the plant; the apparent molecular masses were 62 kD in roots, 60 kD in stems, and 64 kD in nodules. The root 62-kD CaM-BP was purified, and internal microsequence analysis was performed on the protein. A tryptic peptide derived from the CaM-BP consisted of a 13-residue sequence corresponding to a highly conserved region of glutamate decarboxylase (GAD), an enzyme that catalyzes the α-decarboxylation of glutamate to form the stress-related metabolite γ-aminobutyrate. Activity assays of partially purified, desalted, root GAD revealed a 50% stimulation by the addition of 100 μM Ca2+, a 100% stimulation by the addition of 100 μM Ca2+ plus 100 nM CaM, and no appreciable stimulation by CaM in the absence of added Ca2+. The demonstration that plant GAD is a Ca2+-CaM-stimulated enzyme provides a model in which stress-linked metabolism is modulated by a Ca2+-mediated signal transduction pathway.
UR - http://www.scopus.com/inward/record.url?scp=0028486212&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028486212&partnerID=8YFLogxK
M3 - Article
C2 - 7919983
AN - SCOPUS:0028486212
SN - 1040-4651
VL - 6
SP - 1135
EP - 1143
JO - Plant Cell
JF - Plant Cell
IS - 8
ER -