Analysis of fan stage design attributes for boundary layer ingestion

D. K. Hall, E. M. Greitzer, C. S. Tan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

This paper describes a new conceptual framework for threedimensional turbomachinery flow analysis and its use to assess fan stage attributes for mitigating adverse effects of inlet distortion due to boundary layer ingestion (BLI). A non-axisymmetric throughflow method has been developed to describe the fan flow field with inlet distortion. In this the turbomachinery is modeled using momentum and energy source distributions that are determined as a function of local flow conditions and a specified blade camber surface geometry. Comparison with higher-fidelity computational and experimental results shows that the method captures the principal flow redistribution and distortion transfer effects associated with BLI. Distortion response is assessed for a range of (i) rotor spanwise work profiles, (ii) rotor-stator spacings, and (iii) non-axisymmetric stator geometries. For the parameters examined, changes in axisymmetric design result in trades between rotor and stator distortions, or between different radial sections of a given blade row with marginal overall gain. Of the approaches examined, non-axisymmetric stator exit flow angle distributions were found to provide the greatest reduction in rotor flow distortion and thus may offer the most potential for mitigating decreases in performance due to BLI inlet distortion.

Original languageEnglish (US)
Title of host publicationTurbomachinery
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791849699
DOIs
StatePublished - 2016
EventASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT 2016 - Seoul, Korea, Republic of
Duration: Jun 13 2016Jun 17 2016

Publication series

NameProceedings of the ASME Turbo Expo
Volume2A-2016

Other

OtherASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT 2016
Country/TerritoryKorea, Republic of
CitySeoul
Period6/13/166/17/16

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Analysis of fan stage design attributes for boundary layer ingestion'. Together they form a unique fingerprint.

Cite this