Abstract
The objective of the current work is to investigate the feasibility of an in-situ technique to characterize the evolution of fatigue failure in conventionally manufactured aluminum parts in real time. An in-situ fatigue testing setup integrated with ultrasonic transducers and a digital microscope allows for the systematic study of fatigue crack evolution in aluminum specimens. The resulting data from experimentation, characterization, and analysis are integrated to gain unprecedented insights into the evolution of fatigue failure in wrought aluminum parts. The learning from this work will be further implemented on additively manufactured specimens.
Original language | English (US) |
---|---|
Pages | 600-608 |
Number of pages | 9 |
State | Published - 2019 |
Event | 30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019 - Austin, United States Duration: Aug 12 2019 → Aug 14 2019 |
Conference
Conference | 30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019 |
---|---|
Country/Territory | United States |
City | Austin |
Period | 8/12/19 → 8/14/19 |
All Science Journal Classification (ASJC) codes
- Surfaces, Coatings and Films
- Surfaces and Interfaces