Analysis of forming limits in biaxial and dome test

Research output: Chapter in Book/Report/Conference proceedingConference contribution


From centuries the metals and materials has been characterized using a traditional method called uniaxial tension test. The data acquired from this test found adequate for operations of simple forming where one axis stretching is dominant. Currently due to the demand of lightweight component production, multiple individual parts are eliminated by stamping in a single complex shape which further reduces many secondary operation. This need is driven by the requirement of 54 miles per gallon by 2025. Due to the complex part geometry, the forming method induces multi-axial stress states, which found difficult to predict using conventional tools. Thus to analyze these multi-axial stress states limiting dome height test and bulge test were recommended in many research. However, these tests limit the possibilities of applying multiaxial loading and resulting stress patterns due to contact surfaces. Thus a test machine called biaxial test is devised which would provide the capability to test the specimen in multi-axial stress states with varying load. In this paper, two processes, limiting dome test and biaxial test were modeled and compared. For this, the cruciform test specimens were used in biaxial test and conventional forming limit specimens for dome test. Variation of loadings were provided multi-axially in both test to capture the limit strain from uniaxial to equi-biaxial strain mode. In addition, the strain path, forming and formability was investigated and difference between the tests were provided.

Original languageEnglish (US)
Title of host publicationAdvanced Manufacturing
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858356
StatePublished - 2017
EventASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017 - Tampa, United States
Duration: Nov 3 2017Nov 9 2017

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)


OtherASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017
Country/TerritoryUnited States

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering


Dive into the research topics of 'Analysis of forming limits in biaxial and dome test'. Together they form a unique fingerprint.

Cite this