Abstract

Human hemochromatosis protein (HFE) is involved in iron metabolism. Two major HFE polymorphisms, H63D and C282Y, have been associated with an increased risk of cancers. Previously, we reported decreased gender effects in overall survival based on H63D or C282Y HFE polymorphisms patients with glioblastoma multiforme (GBM). However, the effect of other single nucleotide variation (SNV) in the HFE gene on the cancer development and progression has not been systematically studied. To expand our finding in a larger sample, and to identify other HFE SNV, we analyzed the frequency of somatic SNV in HFE gene and its relationship to survival in GBM patients using The Cancer Genome Atlas (TCGA) GBM (Caucasian only) database. We found 9 SNVs with increased frequency in blood normal of TCGA GBM patients compared to the 1000Genome. Among 9 SNVs, 7 SNVs were located in the intron and 2 SNVs (i.e., H63D, C282Y) in the exon of HFE gene. The statistical analysis demonstrated that blood normal samples of TCGA GBM have more H63D (p = 0.0002, 95% Confidence interval (CI): 0.2119-0.3223) or C282Y (p = 0.0129, 95% CI: 0.0474-0.1159) HFE polymorphisms than 1000Genome. The Kaplan-Meier survival curve for the 264 GBM samples revealed no difference between wild type (WT) HFE and H63D, and WT HFE and C282Y GBM patients. In addition, there was no difference in the survival of male/female GBM patients based on HFE genotype. There was no correlation between HFE expression and survival. In conclusion, the current results suggest that somatic HFE polymorphisms do not impact GBM patients' survival in the TCGA data set of GBM.

Original languageEnglish (US)
Article numbere0174778
JournalPloS one
Volume12
Issue number3
DOIs
StatePublished - Mar 2017

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Analysis of single nucleotide variants of HFE gene and association to survival in the Cancer Genome Atlas GBM data'. Together they form a unique fingerprint.

Cite this