Analysis of stagnation point flow of an upper-convected Maxwell fluid

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Several recent papers have investigated the two-dimensional stag-nation point flow of an upper-convected Maxwell fluid by employing a similarity change of variable to reduce the governing PDEs to a nonlinear third order ODE boundary value problem (BVP). In these previous works, the BVP was studied numerically and several conjectures regarding the existence and behavior of the solutions were made. The purpose of this article is to mathematically verify these conjectures. We prove the existence of a solution to the BVP for all relevant values of the elasticity parameter. We also prove that this solution has monotonically increasing first derivative, thus verifying the conjecture that no “overshoot” of the boundary condition occurs. Uniqueness results are presented for a large range of parameter space and bounds on the skin friction coefficient are calculated.

Original languageEnglish (US)
Article number302
JournalElectronic Journal of Differential Equations
StatePublished - Dec 6 2017

All Science Journal Classification (ASJC) codes

  • Analysis


Dive into the research topics of 'Analysis of stagnation point flow of an upper-convected Maxwell fluid'. Together they form a unique fingerprint.

Cite this