TY - GEN
T1 - Analysis-synthesis model learning with shared features
T2 - 15th IEEE International Symposium on Biomedical Imaging, ISBI 2018
AU - Li, Xuelu
AU - Monga, Vishal
AU - Rao, U. K.Arvind
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/5/23
Y1 - 2018/5/23
N2 - Automated histopathological image analysis offers exciting opportunities for the early diagnosis of several medical conditions including cancer. There are however stiff practical challenges: 1.) discriminative features from such images for separating diseased vs. healthy classes are not readily apparent, and 2.) distinct classes, e.g. healthy vs. stages of disease continue to share several geometric features. We propose a novel Analysis-synthesis model Learning with Shared Features algorithm (ALSF) for classifying such images more effectively. In ALSF, a joint analysis and synthesis learning model is introduced to learn the classifier and the feature extractor at the same time. In this way, the computation load in patch-level based image classification can be much reduced. Crucially, we integrate into this framework the learning of a low rank shared dictionary and a shared analysis operator, which more accurately represents both similarities and differences in histopathological images from distinct classes. ALSF is evaluated on two challenging databases: (1) kidney tissue images provided by the Animal Diagnosis Lab (ADL) at the Pennsylvania State University and (2) brain tumor images from The Cancer Genome Atlas (TCGA) database. Experimental results confirm that ALSF can offer benefits over state of the art alternatives.
AB - Automated histopathological image analysis offers exciting opportunities for the early diagnosis of several medical conditions including cancer. There are however stiff practical challenges: 1.) discriminative features from such images for separating diseased vs. healthy classes are not readily apparent, and 2.) distinct classes, e.g. healthy vs. stages of disease continue to share several geometric features. We propose a novel Analysis-synthesis model Learning with Shared Features algorithm (ALSF) for classifying such images more effectively. In ALSF, a joint analysis and synthesis learning model is introduced to learn the classifier and the feature extractor at the same time. In this way, the computation load in patch-level based image classification can be much reduced. Crucially, we integrate into this framework the learning of a low rank shared dictionary and a shared analysis operator, which more accurately represents both similarities and differences in histopathological images from distinct classes. ALSF is evaluated on two challenging databases: (1) kidney tissue images provided by the Animal Diagnosis Lab (ADL) at the Pennsylvania State University and (2) brain tumor images from The Cancer Genome Atlas (TCGA) database. Experimental results confirm that ALSF can offer benefits over state of the art alternatives.
UR - http://www.scopus.com/inward/record.url?scp=85048119705&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048119705&partnerID=8YFLogxK
U2 - 10.1109/ISBI.2018.8363555
DO - 10.1109/ISBI.2018.8363555
M3 - Conference contribution
AN - SCOPUS:85048119705
T3 - Proceedings - International Symposium on Biomedical Imaging
SP - 203
EP - 206
BT - 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018
PB - IEEE Computer Society
Y2 - 4 April 2018 through 7 April 2018
ER -