Abstract
Electric-dipole optical second harmonic generation (SHG) is a second-order nonlinear process that is widely used as a sensitive probe to detect broken inversion symmetry and local polar order. Analytical modeling of the SHG polarimetry of a nonlinear optical material is essential to extract its point group symmetry and the absolute nonlinear susceptibilities. Current literature on SHG analysis involves numerous approximations and a wide range of (in)accuracies. We have developed an open-source package called the Second Harmonic Analysis of Anisotropic Rotational Polarimetry (♯SHAARP.si) which derives analytical and numerical solutions of reflection SHG polarimetry from a single interface (.si) for bulk homogeneous crystals with arbitrary symmetry group, arbitrary crystal orientation, complex and anisotropic linear dielectric tensor with frequency dispersion, a general SHG tensor and arbitrary light polarization. ♯SHAARP.si enables accurate modeling of polarimetry measurements in reflection geometry from highly absorbing crystals or wedge-shaped transparent crystals. The package is extendable to multiple interfaces.
Original language | English (US) |
---|---|
Article number | 246 |
Journal | npj Computational Materials |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2022 |
All Science Journal Classification (ASJC) codes
- Modeling and Simulation
- General Materials Science
- Mechanics of Materials
- Computer Science Applications