Abstract
A rigorous analytical approach is developed to test for the existence of a continuous nonlinear functional relationship between systems. We compare the application of this nonlinear local technique to the existing analytical linear global approach in the setting of increasing additive noise. For natural systems with unknown levels of noise and nonlinearity, we propose a general framework for detecting coupling. Lastly, we demonstrate the applicability of this method to detect coupling between simultaneous, experimentally measured, intracellular voltages between neurons within a mammalian neuronal network.
Original language | English (US) |
---|---|
Number of pages | 1 |
Journal | Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics |
Volume | 69 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2004 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Mathematical Physics
- Condensed Matter Physics
- General Physics and Astronomy