TY - GEN
T1 - Analytical modeling of a multifunctional segmented lithium ion battery unimorph actuator
AU - Gonzalez, Cody
AU - Ma, Jun
AU - Frecker, Mary
AU - Rahn, Christopher
N1 - Publisher Copyright:
Copyright © 2018 ASME.
PY - 2018
Y1 - 2018
N2 - Silicon anodes in lithium ion batteries have high theoretical capacity and large volumetric expansion. In this paper, both characteristics are used in a segmented unimorph actuator consisting of several Si composite anodes on a copper current collector. Each unimorph segment is self-actuating during discharge and the discharge power can be provided to external circuits. With no external forces and zero current draw, the unimorph segments will maintain their actuated shape. Stress-potential coupling allows for the unimorph actuator to be self-sensing because bending changes the anodes’ potential. An analytical model is derived from a superposition of pure bending and extensional deformation forces and moments induced by the cycling of a Si anode. An approximately linear relationship between axial strain and state of charge of the anode drives the bending displacement of the unimorph. The segmented device consists of electrically insulated and individually controlled segments of the Si-coated copper foil to allow for variable curvature throughout the length of the beam. The model predicts the free deflection along the length of the beam and the blocked force. Tip deflection and blocked force are shown for a range of parameters including segment thicknesses, beam length, number of segments, and state of charge. The potential applications of this device include soft robots and dexterous 3D grippers.
AB - Silicon anodes in lithium ion batteries have high theoretical capacity and large volumetric expansion. In this paper, both characteristics are used in a segmented unimorph actuator consisting of several Si composite anodes on a copper current collector. Each unimorph segment is self-actuating during discharge and the discharge power can be provided to external circuits. With no external forces and zero current draw, the unimorph segments will maintain their actuated shape. Stress-potential coupling allows for the unimorph actuator to be self-sensing because bending changes the anodes’ potential. An analytical model is derived from a superposition of pure bending and extensional deformation forces and moments induced by the cycling of a Si anode. An approximately linear relationship between axial strain and state of charge of the anode drives the bending displacement of the unimorph. The segmented device consists of electrically insulated and individually controlled segments of the Si-coated copper foil to allow for variable curvature throughout the length of the beam. The model predicts the free deflection along the length of the beam and the blocked force. Tip deflection and blocked force are shown for a range of parameters including segment thicknesses, beam length, number of segments, and state of charge. The potential applications of this device include soft robots and dexterous 3D grippers.
UR - http://www.scopus.com/inward/record.url?scp=85057236436&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057236436&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2018-8123
DO - 10.1115/SMASIS2018-8123
M3 - Conference contribution
AN - SCOPUS:85057236436
T3 - ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2018
BT - Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2018
Y2 - 10 September 2018 through 12 September 2018
ER -