Analyzing haloacetic acids using gas chromatography/mass spectrometry

Yuefeng Xie

Research output: Contribution to journalArticlepeer-review

95 Scopus citations

Abstract

Haloacetic acids (HAAs) are a group of disinfection by-products formed in chlorinated water. Due to their potential health effects and widespread occurrences, HAAs are regulated in drinking water in the United States under a promulgated regulation. To better control the formation of HAAs in drinking water, a reliable and accurate analytical method is needed for HAA monitoring. In the present study, a liquid-liquid microextraction, acidic methanol derivatization, and gas chromatography/mass spectrometry (GC/MS) detection method was developed for determining HAAs and dalapon in drinking water. The newly developed method is capable of analyzing all nine HAAs and dalapon at μg/l levels. The method performance, including the method detection limit (MDL) and spiking recovery, was evaluated. In comparison to EPA Method 552.2, which uses gas chromatography/electron capture detection (GC/ECD), this GC/MS method gave cleaner baselines and had few interfering peaks. For each of all nine HAAs and dalapon, the MDL was less than 1μg/l and the spiking recovery ranged from 73 to 165%. Using the GC/MS method, the run time could also be significantly reduced without compromising the analytical results. Further study is needed to fine-tune this GC/MS based analytical method, especially in the detection of brominated trihaloacetic acids and monochloroacetic acid.

Original languageEnglish (US)
Pages (from-to)1599-1602
Number of pages4
JournalWater Research
Volume35
Issue number6
DOIs
StatePublished - 2001

All Science Journal Classification (ASJC) codes

  • Water Science and Technology
  • Ecological Modeling
  • Pollution
  • Waste Management and Disposal
  • Environmental Engineering
  • Civil and Structural Engineering

Fingerprint

Dive into the research topics of 'Analyzing haloacetic acids using gas chromatography/mass spectrometry'. Together they form a unique fingerprint.

Cite this