Ancient DNA from the skeletons of Roopkund Lake reveals Mediterranean migrants in India

Éadaoin Harney, Ayushi Nayak, Nick Patterson, Pramod Joglekar, Veena Mushrif-Tripathy, Swapan Mallick, Nadin Rohland, Jakob Sedig, Nicole Adamski, Rebecca Bernardos, Nasreen Broomandkhoshbacht, Brendan J. Culleton, Matthew Ferry, Thomas K. Harper, Megan Michel, Jonas Oppenheimer, Kristin Stewardson, Zhao Zhang, Harashawaradhana, Maanwendra Singh BartwalSachin Kumar, Subhash Chandra Diyundi, Patrick Roberts, Nicole Boivin, Douglas J. Kennett, Kumarasamy Thangaraj, David Reich, Niraj Rai

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


Situated at over 5,000 meters above sea level in the Himalayan Mountains, Roopkund Lake is home to the scattered skeletal remains of several hundred individuals of unknown origin. We report genome-wide ancient DNA for 38 skeletons from Roopkund Lake, and find that they cluster into three distinct groups. A group of 23 individuals have ancestry that falls within the range of variation of present-day South Asians. A further 14 have ancestry typical of the eastern Mediterranean. We also identify one individual with Southeast Asian-related ancestry. Radiocarbon dating indicates that these remains were not deposited simultaneously. Instead, all of the individuals with South Asian-related ancestry date to ~800 CE (but with evidence of being deposited in more than one event), while all other individuals date to ~1800 CE. These differences are also reflected in stable isotope measurements, which reveal a distinct dietary profile for the two main groups.

Original languageEnglish (US)
Article number3670
JournalNature communications
Issue number1
StatePublished - Dec 1 2019

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Ancient DNA from the skeletons of Roopkund Lake reveals Mediterranean migrants in India'. Together they form a unique fingerprint.

Cite this