TY - JOUR
T1 - Anisotropic thermal conductivity of c-axis aligned Bi2Sr 2CaCu2Ox superconductor in high magnetic fields
AU - Nakamae, S. C.
AU - Crow, J.
AU - Sarrao, J.
AU - Schwartz, Justin
PY - 1998/1/1
Y1 - 1998/1/1
N2 - The anomalous behavior of the thermal conductivity, κ, of high temperature superconductors (HTS) has been attributed to two conflicting theories (phonon domination and electron domination) since the discovery of HTS. Change in κ due to a magnetic field is a direct consequence of additional scattering processes between the phonons, the charge carriers, and the flux lines. The existing theories predict different scattering effects for the phonons and the electrons. Therefore, knowing magnetothermal conductivity can provide useful information for the nature of heat carriers in HTS and the understanding of the vortex dynamics. We have measured the in-plane thermal conductivity of a c-axis aligned Bi2Sr 2CaCu 2Ox superconductor in magnetic fields up to 17 T. The magnetic field was applied both parallel and perpendicular to the c axis and always perpendicular to the direction of heat flow. The results are compared to existing electronic and phononic models. It has been discovered that the electronic thermal conductivity, κe, calculated from the Wiedemann-Franz law, does not predict the measured behavior of the thermal conductivity. Rather, the phonon thermal conductivity, κph, calculated from the extended BRT (Bardeen, Richayzen, and Tewordt) theory, reproduces the experimental results accurately. The anisotropy of the in-plane magnetothermal conductivity is also investigated.
AB - The anomalous behavior of the thermal conductivity, κ, of high temperature superconductors (HTS) has been attributed to two conflicting theories (phonon domination and electron domination) since the discovery of HTS. Change in κ due to a magnetic field is a direct consequence of additional scattering processes between the phonons, the charge carriers, and the flux lines. The existing theories predict different scattering effects for the phonons and the electrons. Therefore, knowing magnetothermal conductivity can provide useful information for the nature of heat carriers in HTS and the understanding of the vortex dynamics. We have measured the in-plane thermal conductivity of a c-axis aligned Bi2Sr 2CaCu 2Ox superconductor in magnetic fields up to 17 T. The magnetic field was applied both parallel and perpendicular to the c axis and always perpendicular to the direction of heat flow. The results are compared to existing electronic and phononic models. It has been discovered that the electronic thermal conductivity, κe, calculated from the Wiedemann-Franz law, does not predict the measured behavior of the thermal conductivity. Rather, the phonon thermal conductivity, κph, calculated from the extended BRT (Bardeen, Richayzen, and Tewordt) theory, reproduces the experimental results accurately. The anisotropy of the in-plane magnetothermal conductivity is also investigated.
UR - http://www.scopus.com/inward/record.url?scp=0006053136&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0006053136&partnerID=8YFLogxK
U2 - 10.1063/1.367710
DO - 10.1063/1.367710
M3 - Article
AN - SCOPUS:0006053136
SN - 0021-8979
VL - 83
SP - 6786
EP - 6788
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 11
ER -