Abstract
This paper presents anomaly prediction in complex mechanical systems at an early stage where anomaly is defined as an observable deviation from the nominal dynamical response. The anomaly prediction algorithm is built upon two-time-scale analysis of time series data and relies on a combination of Nonlinear Systems theory and Language theory. The algorithm has been validated for anomaly prediction on a rotorcraft gearbox testbed for two different types of anomalies.
Original language | English (US) |
---|---|
Pages (from-to) | 4275-4280 |
Number of pages | 6 |
Journal | Proceedings of the American Control Conference |
Volume | 5 |
State | Published - 2003 |
Event | 2003 American Control Conference - Denver, CO, United States Duration: Jun 4 2003 → Jun 6 2003 |
All Science Journal Classification (ASJC) codes
- Electrical and Electronic Engineering